АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Пример. В педиатрии среднеквадратическое отклонение используется для оценки физического развития детей путем сравнения данных конкретного ребенка с соответствующими
В педиатрии среднеквадратическое отклонение используется для оценки физического развития детей путем сравнения данных конкретного ребенка с соответствующими стандартными показателями. За стандарт принимаются средние арифметические показатели физического развития здоровых детей. Сравнение показателей со стандартами проводят по специальным таблицам, в которых стандарты приводятся вместе с соответствующими им сигмальными шкалами. Считается, что если показатель физического развития ребенка находится в пределах стандарт (среднее арифметическое) ±σ, то физическое развитие ребенка (по этому показателю) соответствует норме. Если показатель находится в пределах стандарт ±2σ, то имеется незначительное отклонение от нормы. Если показатель выходит за эти границы, то физическое развитие ребенка резко отличается от нормы (возможна патология).
Кроме показателей вариации, выраженных в абсолютных величинах, в статистическом исследовании используются показатели вариации, выраженные в относительных величинах. Коэффициент осцилляции -это отношение размаха вариации к средней величине признака. Коэффициент вариации - это отношение среднего квадратического отклонения к средней величине признака. Как правило, эти величины выражаются в процентах.
Формулы расчета относительных показателей вариации:
Из приведенных формул видно, что чем больше коэффициент V приближен к нулю, тем меньше вариация значений признака. Чем больше V, тем более изменчив признак.
В статистической практике наиболее часто применяется коэффициент вариации. Он используется не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному). Арифметически отношение σ и средней арифметической нивелирует влияние абсолютной величины этих характеристик, а процентное соотношение делает коэффициент вариации величиной безразмерной (неименованной).
Полученное значение коэффициента вариации оценивается в соответствии с ориентировочными градациями степени разнообразия признака:
- слабое — до 10 %
- среднее — 10 - 20 %
- сильное — более 20 %
Использование коэффициента вариации целесообразно в случаях, когда приходится сравнивать признаки разные по своей величине и размерности.
Отличие коэффициента вариации от других критериев разброса наглядно демонстрирует пример.
Таблица 1
Состав работников промышленного предприятия
Учетный признак
| Среднее арифметическое
| Среднее квадратическое отклонение σ
| Коэффициент вариации, %
| Стаж работы (лет)
| 8,7
| 2,8
| 32,1
| Возраст (лет)
| 37,2
| 4,1
| 11,0
| Образование (классов)
| 9,2
| 1,1
| 11,9
| На основании приведенных в примере статистических характеристик можно сделать вывод об относительной однородности возрастного состава и образовательного уровня работников предприятия при низкой профессиональной устойчивости обследованного контингента. Нетрудно заметить, что попытка судить об этих социальных тенденциях по среднему квадратическому отклонению привела бы к ошибочному заключению, а попытка сравнения учетных признаков «стаж работы» и «возраст» с учетным признаком «образование» вообще была бы некорректной из-за разнородности этих признаков.
Дата добавления: 2014-12-11 | Просмотры: 808 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
|