Тема: «Описательная статистика. Показатели разнообразия признака в совокупности»
Основными критериями разнообразия признака в статистической совокупности являются: лимит, амплитуда, среднее квадратическое отклонение, коэффициент осцилляции и коэффициент вариации. На предыдущем занятии обсуждалось, что средние величины дают лишь обобщающую характеристику изучаемого признака в совокупности и не учитывают значения отдельных его вариант: минимальное и максимальное значения, выше среднего, ниже среднего и т.д.
Пример. Средние величины двух разных числовых последовательностей: -100; -20; 100; 20 и 0,1; -0,2; 0,1 абсолютно одинаковы и равны О. Однако, диапазоны разброса данных этих последовательностей относительного среднего значения сильно различны.
Определение перечисленных критериев разнообразия признака прежде всего осуществляется с учетом его значения у отдельных элементов статистической совокупности.
Показатели измерения вариации признака бывают абсолютные и относительные. К абсолютным показателям вариации относят: размах вариации, лимит, среднее квадратическое отклонение, дисперсию. Коэффициент вариации и коэффициент осцилляции относятся к относительным показателям вариации.
Лимит (lim)– это критерий, который определяется крайними значениями вариант в вариационном ряду. Другими словами, данный критерий ограничивается минимальной и максимальной величинами признака:
Амплитуда (Am) или размах вариации – это разность крайних вариант. Расчет данного критерия осуществляется путем вычитания из максимального значения признака его минимального значения, что позволяет оценить степень разброса вариант:
Недостатком лимита и амплитуды как критериев вариабельности является то, что они полностью зависят от крайних значений признака в вариационном ряду. При этом не учитываются колебания значений признака внутри ряда.
Наиболее полную характеристику разнообразия признака в статистической совокупности дает среднее квадратическое отклонение (сигма), которое является общей мерой отклонения вариант от своей средней величины. Среднее квадратическое отклонение часто называют также стандартным отклонением.
В основе среднего квадратического отклонения лежит сопоставление каждой варианты со средней арифметической данной совокупности. Так как в совокупности всегда будут варианты как меньше, так и больше, чем она, то сумма отклонений , имеющих знак " ", будет погашаться суммой отклонений, имеющих знак " ", т.е. сумма всех отклонений равна нулю. Для того, чтобы избежать влияния знаков разностей берут отклонения вариант от среднего арифметического в квадрате, т.е. . Сумма квадратов отклонений не равняется нулю. Чтобы получить коэффициент, способный измерить изменчивость, берут среднее от суммы квадратов – это величина носит название дисперсии:
По смыслу, дисперсия – это средний квадрат отклонений индивидуальных значений признака от его средней величины. Дисперсия – квадрат среднего квадратического отклонения .
Дисперсия является размерной величиной (именованной). Так, если варианты числового ряда выражены в метрах, то дисперсия дает квадратные метры; если варианты выражены в килограммах, то дисперсия дает квадрат этой меры (кг2), и т.д.
Среднее квадратическое отклонение – квадратный корень из дисперсии:
В том случае, если число элементов совокупности , то при расчете дисперсии и среднего квадратического отклонения в знаменателе дроби вместо необходимо ставить .
Расчет среднего квадратического отклонения можно разбить на шесть этапов, которые необходимо осуществить в определенной последовательности:
1. определить среднюю арифметическую M имеющейся совокупности
2. рассчитать отклонение каждой варианты от средней величины:
3. каждое отклонение возвести в квадрат: (Для получения обобщающей характеристики числового ряда использовать сумму отклонений от среднего нельзя. Это связано с тем, что сумма всех отрицательных и положительных отклонений от среднего всегда равна нулю.)
4. посчитать сумму всех
5. разделить получившуюся сумму на число элементов совокупности n
6. из полученного результата извлечь квадратный корень
Применение среднеквадратического отклонения:
а) для суждения о колеблемости вариационных рядов и сравнительной оценки типичности (представительности) средних арифметических величин. Это необходимо в дифференциальной диагностике при определении устойчивости признаков.
б) для реконструкции вариационного ряда, т.е. восстановления его частотной характеристики на основе правила «трех сигм». В интервале (М±3σ) находится 99,7% всех вариант ряда, в интервале (М±2σ) — 95,5% и в интервале (М±1σ) — 68,3% вариант ряда (рис.1).
в) для выявления «выскакивающих» вариант
г) для определения параметров нормы и патологии с помощью сигмальных оценок
д) для расчета коэффициента вариации
е) для расчета средней ошибки средней арифметической величины.
Для характеристики любой генеральной совокупности, имеющей нормальный тип распределения, достаточно знать два параметра: среднюю арифметическую и среднее квадратическое отклонение.
Рисунок 1. Правило «трех сигм»
Дата добавления: 2014-12-11 | Просмотры: 1542 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
|