Электромагнитные поля радиочастот
Наряду с широким применением в радиосвязи и радиовещании, радиолокации и радиоастрономии, телевидении и медицине ЭМП используются для различных технологических процессов: индукционного нагрева, термообработки металлов и древесины, сварки пластмасс, создания низкотемпературной плазмы и др.
Электромагнитные поля радиочастотной части спектра подразделяются по длине волны на ряд диапазонов (табл. 5).
Электромагнитное поле характеризуется совокупностью переменных электрического и магнитного составляющих. Различные диапазоны радиоволн объединяет общая физическая природа, но они существенно различаются по заключенной в них энергии, характеру распространения, поглощения, отражения, а вследствие этого - по действию на среду, в том числе и на человека. Чем короче длина волны и больше частота колебаний, тем больше энергии несет в себе квант.
Связь между энергией (I) и частотой (f) колебаний определяется как:
I = h*f или I = h*C/l,
так как между длиной волны (l) и частотой (f) существует соотношение
f = С/l,
где С - скорость распространения электромагнитной волны в воздухе (С = 3*108 м/с), h – постоянная Планка, равная 6,6*10-34 Вт/см2.
Вокруг, любого источника излучения ЭМП разделяют на 3 зоны: ближнюю - зону индукции, промежуточную - зону интерференции и дальнюю - волновую зону.
Если геометрические размеры источника излучения меньше длины волны излучения (l) - точечный источник, границы зон определяются следующими расстояниями:
R < l/2p - ближняя зона (индукции);
l/2p < R < 2pl - промежуточная (интерференции);
R > 2pl - дальняя зона (волновая).
Таблица 5. Классификация радиоволн, принятая в гигиенической практике.
Название диапазона
| l
| Диапазон частот
| Частота
| По международному регламенту
| Название диапазона
| Номер
| ДВ (километровые)
| 10-1 км
| ВЧ
| 3-300кГц
| НЧ
|
| СВ (гектометровые)
| 1км-100м
| ВЧ
| 0,3-3МГц
| СЧ
|
| КВ (декаметровые)
| 100-10м
| ВЧ
| 3-30МГц
| ВЧ
|
| УКВ (метровые)
| 10-1м
| УВЧ
| 30-300МГц
| ОВЧ
|
| Микроволны: дециметровые
| 1м-10см
| СВЧ
| 0,3-3ГГц
| УВЧ
|
| Сантиметровые
| 10-1см
| СВЧ
| 3-30ГГц
| СВЧ
|
| Миллиметровые
| 1см-1мм
| СВЧ
| 30-300ГГц
| КВЧ
|
| Работающие с источниками излучения НЧ, СЧ и в известной степени ВЧ и ОВЧ диапазонов находятся в зоне индукции. При эксплуатации генераторов СВЧ и КВЧ диапазонов работающие чаще находятся в волновой зоне.
Между электрической и магнитной составляющими электромагнитного поля индукции нет определенной зависимости, и они могут отличаться друг от друга во много раз (Е =/= 377 Н). Напряженность электрической и магнитной составляющих в зоне индукции смещена по фазе на 90°. Когда одна из них достигает максимума, другая имеет минимум. В зоне излучения напряженности обеих составляющих поля совпадают по фазе и соблюдаются условия, когда Е = 377 Н.
Поскольку в зоне индукции на работающих воздействуют различные по величине электрические и магнитные поля, интенсивности облучения работающих с низкими (НЧ), средними (СЧ), высокими (ВЧ) и очень высокими (ОВЧ) частотами оцениваются раздельно величинами направленности электрической и магнитной составляющих поля. Напряженность электрического поля измеряется в вольтах на метр (В/м), напряженность магнитного поля в амперах на метр (А/м).
В волновой зоне, в которой практически находятся работающие с аппаратурой, генерирующей дециметровые (УВЧ), сантиметровые (СВЧ) и миллиметровые (КВЧ) волны, интенсивность поля оценивается величиной плотности потока энергии, т. е. количеством энергии, падающей на единицу поверхности. В этом случае плотность потока энергии (ППЭ) выражается в ваттах на 1 м2 или в производных единицах: милливаттах и микроваттах на см2 (Вм/см2, мВт/см2, мкВт/см2).
Электромагнитные поля по мере удаления от источников излучения быстро затухают. Напряженность электрической составляющей ноля в зоне индукции убывает обратно пропорционально расстоянию в третьей степени, а напряженность магнитной составляющей – обратно пропорционально квадрату расстояния. В зоне излучения напряженность электромагнитного поля убывает обратно пропорционально расстоянию в первой степени.
Для измерения напряженности ЭМП радиочастот в диапазоне 60 кГц - 300 мГц может быть использован измеритель напряженности ближнего поля типа NFM-1 производства ГДР.
Для измерения плотности потока (ППЭ) в диапазоне частот 300 мГц - 37 ГГц используются приборы типа ПЗ-9.
Дата добавления: 2015-02-06 | Просмотры: 1103 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 |
|