ВИДЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
К ионизирующим излучениям относятся:
· гамма-излучение – электромагнитное фотонное излучение, испускаемое при ядерных превращениях или при ассимиляции частиц;
· характеристическое излучение – фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атома;
· тормозное излучение – фотонное излучение с непрерывным спектром, испускаемое при изменении кинетической энергии заряженных частиц. Тормозное излучение возникает в среде, окружающей источник бета-излучения, в рентгеновских трубках, ускорителях электронов и т. п.;
· рентгеновское излучение – совокупность тормозного и характеристического излучений, диапазон энергии фотонов которого составляет 1 КэВ – 1 МэВ;
· корпускулярное излучение – ионизирующее излучение, состоящее из частиц с массой покоя, отличной от нуля (альфа- и бета-частиц, протонов, нейтронов и др.).
По взаимодействию ионизирующего излучения с веществом оно подразделяется на несколько видов.
Альфа-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде ядер или ядерных реакциях. Этот вид излучения наблюдается преимущественно у естественных радиоактивных элементов (радий, торий, уран и др.). Их энергия не превышает несколько мегаэлектроновольт. Длина пробега в воздухе 2,5 – 9 см, в биологических тканях несколько десятков микрометров. Обладая сравнительно большой массой, альфа-частицы быстро теряют свою энергию при взаимодействии с веществом, что обусловливает их низкую проникающую способность и высокую удельную ионизацию.
Бета излучение – поток электронов или позитронов, возникающих при радиоактивном распаде. Энергия бета-частиц не превышает нескольких мегаэлектроновольт. Максимальный пробег в воздухе составляет около 1700 см, в тканях – 2,5 мм. Ионизирующая способность бета-частиц ниже, а проникающая способность выше, чем альфа-частиц, так как они обладают значительно меньшей массой и при равной с альфа-частицами энергией имеют меньший заряд. В результате ионизации в некоторых средах происходят вторичные процессы: люминесценция, фотохимические реакции, образование химически активных радикалов.
Гамма излучение. Его энергия находится в пределах 0,01 – 10 МэВ. Проникающая способность гамма-излучения очень высокая и находится в прямой зависимости от энергии.
Рентгеновское излучение – характеризуется очень короткой длиной волны (0,006 – 2 нм). Важнейшим по свойствам при взаимодействии с веществом является большая проникающая способность при незначительной ионизации среды.
Способностью преобразовывать свою энергию в упругих и неупругих взаимодействиях с ядрами атомов обладают нейтроны, которые сами не несут на себе электрического заряда. При упругих взаимодействиях возникает обычная ионизация вещества. При неупругих – возникает вторичное излучение. В зависимости от кинетической энергии нейтроны разделяются на сверхбыстрые, быстрые, промежуточные, медленные и тепловые.
Проникающая способность нейтронов существенно зависит от их энергии и состава атомов вещества, с которыми они взаимодействуют.
Дата добавления: 2015-02-06 | Просмотры: 1087 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 |
|