ПРОИЗВОДСТВЕННЫЙ ШУМ
В настоящее время практически нет ни одной отрасли народного хозяйства, где шум не был бы в числе ведущих вредных факторов производственной среды. Литейное и металлообрабатывающее производства, лесозаготовительные и строительные работы, добыча полезных ископаемых, текстильная и деревообрабатывающая промышленность - далеко не полный перечень производства, где шум превышает допустимые уровни.
Интенсификация производства, сопровождающаяся повышением рабочих скоростей машин и оборудования, плотности заполнения производственных площадей, приводит к дальнейшему повышению уровней производственного шума, требует дополнительных мероприятий по борьбе с ним.
Источниками шума могут быть колебания, возникающие при соударении, трении, скольжении твердых тел, истечении жидкостей и газов. В производственных условиях источниками колебаний являются работающие станки, ручные механизированные инструменты (электрические и пневматические пилы, отбойные, рубильные молотки, перфораторы), электрические машины (генераторы, электродвигатели, турбины), компрессоры, кузнечно-прессовое, подъемно-транспортное, вспомогательное оборудование (вентиляционные установки, кондиционеры) и т. д.
Действие высоких уровней шума приводит к развитию преждевременного утомления, снижению работоспособности, повышению заболеваемости, инвалидности и другим неблагоприятным последствиям социально-гигиенического и экономического характера.
В гигиенической практике шумом принято называть любой нежелательный звук или совокупность беспорядочно сочетающихся звуков различной частоты и интенсивности, оказывающих неблагоприятное воздействие на организм, мешающих работе и отдыху.
По физической сущности шум - это механические колебания частиц упругой среды (газа, жидкости, твёрдого тела), возникающие под воздействием какой-либо возмущающей силы. При этом звуком называют регулярные периодические колебания, а шумом - непериодические, случайные колебательные процессы.
Физическое понятие о звуке охватывает как слышимые, так и неслышимые колебания упругих сред. Акустические колебания, лежащие в зоне 16 Гц - 20 кГц, воспринимаемой человеком с нормальным слухом, называют звуковыми, а пространство, где они распространяются, - звуковым полем. Акустические колебания с частотой менее 16 Гц называются инфразвуком, выше 20 кГц - ультразвуком.
Основными характеристиками звуковых волн являются их частота, длина волны, интенсивность. Как и в любом другом волновом процессе длина волны (l) связана простой зависимостью с частотой (f) и скоростью (с) звука:
l = с/f,
где l - длина волны, м; с - скорость звука в среде распространения для воздуха 334 м/с при температуре 20 °С и нормальном атмосферном давлении.
Одной из важнейших физических характеристик колебательного процесса является акустический спектр, т. е. совокупность простых гармонических колебании, на которые он может быть разложен.
Интенсивность генерируемых волн определяется звуковой мощностью источника - W, Вт. Мощность источников в реальной жизни находится в широких пределах от 10-12 Вт до многих миллионов ватт. Плотность потока звуковой мощности (энергии), приходящейся на единицу площади, перпендикулярной к направлению волны, называется интенсивностью или силой звука, Вт/м2.
Распространяясь в упругой среде в виде чередующихся участков сгущения и разряжения, звуковая волна оказывает на нее давление. Звуковым давлением принято называть переменную составляющую давления воздуха, возникающую в результате колебаний источника звука, которая накладывается на атмосферное давление и вызывает его флюктуации. Звуковое давление измеряется в Паскалях, Па.
В современной акустике и в гигиенической практике для целей измерения силы звука принято использовать относительные логарифмические единицы, величины децибелы. Десятичный логарифм отношения двух интенсивностей звука I и Io называется уравнением интенсивности
LI = 10 lg (I/Io),
Интенсивность звука (Lp) пропорциональна квадрату звукового давления:
Lp = 10 lg (I/Io) = 10
Lg (P/Po)2 = 20lg (P/Po) дБ.
Уровень звуковой мощности источника соответственно равен:
LW = 10 lg (W/Wo) дБ
Две интенсивности силы звука, отличающиеся в 10 раз, разнятся на 1Б, если они отличаются в 100, 1000, 10000 раз, то имеют разницу в 2, 3, 4...Б или 20, 30, 40 дБ.
Единицы сравнения стандартизированы и представляют собой параметры звуковой волны частотой 1000 Гц, вызывающей минимальное слуховое ощущение (Io =10-12 Вт/м2; Ро = 2*10 -5 Па; Wo = 10-12 Вт = 1 пВт (пиковатт).
Определяемые относительно их уровни интенсивности звукового давления и мощности звука составили шкалу, удобную для измерения и оценки шумов. Различающиеся в десятки тысяч раз звуковые давления (например, шум двигателя и шёпотная речь) имеют разницу уровней 60 – 80 дБ.
Звуковым волнам присущи определенные закономерности распространения во времени и пространстве. При распространении звуков любых частот имеют место обычные для всех типов волн явления отражения, преломления, дифракции и интерференции.
В помещении фронт волны наталкивается на его границы. При этом часть, энергии передается через преграду (преломление), часть отражается обратно в помещение. Передаваемая энергия вызывает образование нового звукового поля с другой стороны преграды.
Работа источника звука внутри помещения образует звуковое поле, обусловленное его непосредственным звучанием и звуками, многократно отраженными от поверхностей ограждений. Звук в помещении не исчезает мгновенно с отключением источника, а продолжает отражаться от поверхностей, постепенно поглощаясь. Время, затраченное на угасание звука, называется временем реверберации. Оно определяется как время, необходимое для снижения уровня шума в помещении на 60 дБ или в миллион раз (10-6) от первоначальной интенсивности звука. В производственных помещениях время реверберации должно быть максимально низким.
Если на пути распространения звуковая волна встречает препятствие, она может огибать его. Это явление называется дифракцией. В случае низкочастотного источника звука большая часть энергии звука вследствие дифракции распространится за пределы преграды. Высокочастотное излучение дает за преградой четкую акустическую тень.
При приходе в данную точку среды двух волн их амплитуды складываются. В точках, куда обе волны приходят в фазе, они усиливают друг друга; в точках, куда они попадают в противофазе - ослабляют. Это явление называется интерференцией.
Законы распространения звуковых волн в помещении должны учитываться гигиенистами, акустиками и строителями при расчете технических средств защиты от шума.
Дата добавления: 2015-02-06 | Просмотры: 990 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 |
|