АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Строение и функции периферических нервов. Виды нервных волокон. Механизм и особенности проведения возбуждения по волокнам разных типов

Прочитайте:
  1. A) генератор патологически усиленного возбуждения
  2. A) нарушение проведения возбуждения по правой ножке пучка Гисса
  3. A) поражение нервных стволов сплетений Б) поражение задних корешков спинного мозга
  4. F07 Расстройства личности и поведения вследствие болезни, повреждения и дисфункции головного мозга
  5. I. 3. Функции Т-лимфоцитов
  6. I. Липидный механизм
  7. I. Моторика и тонус миометрия регулируется нейрогуморальными механизмами.
  8. I. Строение глаза
  9. II Структура и функции почек.
  10. II этап. Регуляция менструальной функциии и профилактика рецидивов

ОТВЕТ: Нервная ткань состоит из нейронов и вспомогательных клеток, которые называются глией. Нейрон образован телом и отходящими от него отростками. Выделяют два типа таких отростков: дендриты и аксон. Дендрит проводит информацию к телу клетки, а аксон – от тела. Есть ещё ряд отличий: дендритов у нейрона может быть несколько, аксон – всегда один. К тому же дендриты обычно короче, чем аксон.

Аксон, окружённый слоем клеток леммоцитов или Шванновских клеток (разновидность глии), формирует нервное волокно, в этом случае он называется осевым цилиндром. Пучки нервных волокон, в свою очередь, образуют нервы. Нервные волокна бывают двух типов: миелиновые и безмиелиновые.

Безмиелиновые волокна представляют собой осевой цилиндр, окружённый цитоплазматическими отростками леммоцитов, которые прилегают друг к другу. Другими словами, леммоциты как бы нанизаны на осевой цилиндр, как бусины на нить. При этом каждый леммоцит содержит в себе несколько осевых цилиндров.

Миелиновое волокно, так же как и безмиелиновое, образовано осевым цилиндром, который окружён леммоцитами. Но в миелиновом волокне, в отличие от безмиелинового, каждый леммоцит содержит в себе только один осевой цилиндр. Отросток леммоцита спирально закручивается вокруг осевого цилиндра, между витками находится вещество миелин. В миелиновом нервном волокне есть участки, лишённые миелина, они называются перехватами Ранвье. По сравнению с остальными участками волокна на единицу площади мембраны в перехватах Ранвье приходится больше натриевых каналов.

Механизм проведения возбуждения по нервному волокну. Основная функция нервного волокна – проводить возбуждение. Эта функция осуществляется следующим образом. При раздражении осевого цилиндра в месте воздействия открываются натриевые каналы, что приводит к возникновению потенциала действия. Во время потенциала действия происходит реверсия мембранного потенциала, то есть наружная поверхность мембраны в возбуждённом участке заряжается отрицательно, а внутренняя – положительно. Соседний участок находится в состоянии покоя, и мембрана там заряжена противоположно по отношению к возбуждённому участку. Вследствие этого между возбуждённым и невозбуждённым участком возникает разность потенциалов, что приводит к открытию натриевых каналов на невозбуждённом участке мембраны и возникновению потенциала действия там. В это время заряд на предыдущем участке мембраны восстанавливается. Таким образом, распространение нервного импульса по нервному волокну происходит за счёт последовательного вовлечения в процесс возбуждения соседних участков. Обратного движения импульса не происходит, поскольку участок мембраны, который только что был вовлечён в возбуждение, на время утрачивает возбудимость (находится в состоянии рефрактерности).

Описанный механизм проведения возбуждения характерен для безмиелиновых волокон, в миелиновых волокнах процесс распространения импульса протекает несколько по-другому. При возникновении потенциала действия под влиянием стимула в возбуждения вовлекается не соседний участок мембраны волокна, а ближайший (или один из ближайших) перехватов Ранвье (где мембрана лишена миелина), поскольку миелинизированные участки мембраны возбуждение не проводят. За счёт такого механизма импульс в миелиновых волокнах распространяется быстрее, потому что возбуждение с возбуждённого участка мембраны передаётся не на соседний участок, а сразу на ближайший перехват Ранвье, который находится на некотором расстоянии. Такой механизм передачи возбуждения называется сальтаторным (скачкоообразным).

Итак, в процессе распространения нервного импульса можно выделить следующие этапы:

1. действие раздражителя на мембрану нервного волокна;

2. открытие натриевых каналов;

3. возникновение возбуждения, смена знака мембраны на противоположный;

4. возникновение разности зарядов между возбуждённым мембраны и невозбуждённым участком мембраны (или перехватом Ранвье);

5. возникновение потенциала действия на соседнем участке мембраны (следующим перехватом Ранвье);

6. восстановление заряда на исходно возбуждённом участке.

Из-за особенностей проведения возбуждения скорость распространения импульса намного выше в миелиновых волокнах (3 – 120 м/с) по сравнению с безмиелиновыми (0,5 – 3 м/с). При этом чем больше диаметр волокна, тем выше скорость проведения возбуждения.


Дата добавления: 2015-05-19 | Просмотры: 1229 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)