Централизованных систем питьевого водоснабжения
Питьевая вода должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства.
Показатель общего микробного числа позволяет получить представление о массивности бактериального загрязнения воды с учетом сапрофитной микрофлоры, поэтому этот показатель используется для контроля эффективности обработки воды на очистных сооружениях водопровода и служит сигналом нарушений в технологии водоподготовки.
Показателем свежего фекального загрязнения воды является норматив на содержание термотолерантных колиформных бактерий Escherichia coli. Отсутствие общих колиформ и термоталерантных колиформ является основным критерием эпидемической безопасности воды в нормативных документах многих стран мира.
Присутствие в воде колифагов, является санитарным показателем вирусного загрязнения питьевой воды.
Cl. perfringens всегда присутствуют в фекалиях. Их споры выживают в воде дольше, чем бактерии кишечной группы, они устойчивы к хлорированию нормальными дозами хлора. Этот показатель определяется в воде поверхностных источников для оценки эффективности обработки воды.
В качестве паразитологического показателя установлен норматив на содержание цист лямблий.
Безвредность питьевой воды по химическому составу характеризуется токсикологическими показателями ее качества и определяется ее соответствием нормативам по следующим показателям:
Ø обобщенные показатели и содержание вредных химических веществ, наиболее часто встречающихся в природных водах, а также вещества антропогенного происхождения, получившие глобальное распространение (сухой остаток, pH, перманганатнаяа окисляемость, нефтепродукты, фенольный индекс, жескость, ПАВ)
Ø содержание вредных химических веществ, поступающих и образующихся в воде в процессе ее обработки в системе водоснабжения (алюминий, формальдегид, железо, полифосфаты, хлориды)
Ø содержание вредных химических веществ, поступающих в источники водоснабжения в результате хозяйственной деятельности человека.
Концентрации химических веществ, нормированных по токсикологическому признаку вредности не должны превышать ПДК, указанных в СанПиН 2.1.4.1074-01.
Благоприятные органолептические свойства воды определяются с помощью органов чувств и включают внешний осмотр пробы воды, выявление пленки на ее поверхности, определение цветности, прозрачности (мутности), запаха и вкуса воды.
Радиационная безопасность питьевой воды основана на общей a- и b-радиоактивности питьевой воды:
Ø общая a-радиоактивность не должна превышать 0,1 Бк/л,
Ø общая b-радиоактивность не должна превышать 1,0 Бк/л.
Предупреждение флюороза и кариеса – нормирование в питьевой воде содержание фтора (флюороз – дефторирование, кариес – фторирование).
Предупреждение эндемического зоба – нормирование в воде содержания йода (обычно добавление солей йода)
Предупреждение водной нитратной метгемоглобинемии – очистка воды от нитратов.
Санитарно-химические показатели органического загрязнения воды. Их нормирование и гигиеническая оценка. Процессы самоочищения водоемов. Роль сапрофитной микрофлоры. БПК как показатель самоочищающей способности воды.
Санитарно-химические показаетли органического загрязнения:
1. Биохимическая потребность воды в кислороде (БПК) – это величина снижения количества растворенного в воде кислорода за определенный период времени (обычно за 5 суток – БПК5 или за 20 суток – БПК20)
2. перманганатная окисляемость – будут повышены.
3. по конкретным соединениям в воде — углеводородам, смолам, фенолам – также будут превышать ПДК.
4. по уровню увеличения по сравнению с результатами предыдущих исследований для одного и того же сезона количества таких санитарно-химических показателей как соли аммония, нитриты и нитраты (т.н. "белковая триада")
5. растворенный кислород и
6. хлориды.
Санитарный режим водоема характеризуется прежде всего количеством растворенного в нем кислорода. Его должно быть не менее 4 мг/л в любой период года.
Каждый водоем — это сложная живая система, где обитают растения, специфические организмы, в том числе и микроорганизмы, которые постоянно размножаются и отмирают, что обеспечивает самоочищение водоемов. Факторы самоочищения водоемов многочисленны и многообразны. Условно их можно разделить на три группы: физические, химические и биологические.
Физические факторы — это разбавление, растворение и перемешивание поступающих загрязнений, осаждение в воде нерастворимых осадков, в том числе и микроорганизмов.
Из химических факторов самоочищения следует отметить окисление органических и неорганических веществ.
К биологическим факторам самоочищения водоемов относится размножение в воде водорослей, плесневых и дрожжевых грибков, сапрофитной микрофлоры. Кроме растений, самоочищению способствуют и представители животного мира: моллюски, некоторые виды амеб.
Самоочищение загрязненной воды сопровождается улучшением ее органолептических свойств и освобождением от патогенных микроорганизмов.
21. Методы улучшения качества питьевой воды. Способы очистки воды (коагуляция, отстаивание, фильтрация). Виды отстойников и фильтров, их гигиеническая оценка. Специальные методы улучшения качества питьевой воды.
Методы улучшения качества питьевой
очистки воды
обеззараживания
На водопроводных очистных сооружениях применяются физические методы очистки воды (отстаивание и фильтрация) и химические (коагуляция).
Для ускорения процесса осветления и обесцвечивания на водопроводных станциях часто используется предварительная химическая обработка воды коагулянтами (Al2(SO4)3, FeCl3, FeSO4) и флокулянтами ( водорастворимые высокомолекулярные соединения, например, полиакриламид), образующими при реакции с бикарбонатов воды коллоидный раствор гидрата окиси алюминия, который в дальнейшем коагулирует с образованием хлопьев:
Al2(SO4)3 + Ca(HCO3)2 ® 2Al(OH)3 + 3CaSO4 + 6CO2
Процесс оседания сопровождается адсорбцией органических примесей, микроорганизмов, яиц гельминтов и пр.
Эффект коагуляции зависит от бикарбонатной жесткости воды и от дозы коагулянта. При недостаточном количестве коагулянта не достигается полное осветление воды, а при избытке – вода приобретает кислый вкус и возможно вторичное образование хлопьев.
Отстаивание воды в горизонтальных и вертикальных отстойниках приводит к ее осветлению и частичному обесцвечиванию.
В горизонтальных отстойниках вода движется горизонтально по направлению продольной оси. На частицы взвеси действуют 2 силы: горизонтально - сила F, зависящая от скорости и направления движения воды, и вниз - сила тяжести частиц Р. Вектор этих сил обусловливает направление осаждения частиц (по диагонали вниз). Чем длиннее отстойник, тем эффективнее осаждение частиц и осветление воды.
В вертикальных отстойниках - резервуарах цилиндрической или прямоугольной формы с конусообразным дном вода подается через трубу снизу и медленно поднимается вверх. При этом силы F и Р разнонаправлены и оседают только те частицы взвеси, у которых F<P, поэтому скорость протекания воды в вертикальном отстойнике должна быть меньше, чем в горизонтальном. Скорость течения воды в горизонтальных отстойниках - 2-4 мм/с, а в вертикальных - < 1 мм/с. Длительность отстаивания воды - 4-8 ч. При этом мельчайшие частицы и значительная часть микроорганизмов не успевают осесть.
Фильтрация воды, позволяющая удалить взвешенные и коллоидные примеси, проводится на медленных и скорых фильтрах.
В медленных фильтрах воду пропускают через подстилаемый гравием крупнозернистый песок, на поверхности и в глубине которого задерживаются взвешенные частицы, образующие активную «биологическую пленку», состоящую из адсорбированных взвешенных частиц, планктона и бактерий. Пленка имеет поры малого диаметра и сама является эффективным фильтром и средой, где происходит самоочищение воды. Профильтрованная вода отводится через дренаж в нижней части емкости. Достоинства медленных фильтров: равномерная фильтрация, эффективность фильтрации 99% бактерий и простота устройства; недостаток - малая скорость движения воды (10 см/ч). Медленные фильтры используются на сельских водопроводах, где потребность в очищенной воде не велика.
Скорые фильтры значительно увеличивают скорость фильт рации (5 м3/ч), однако загрязнение фильтрующего слоя происходит быстрее, что требует промывки фильтра 2 раза в сутки (в медленных фильтрах 1 раз в 1,5-2 мес).
Контактный осветлитель - установка для получения техни ческой воды работает по схеме коагуляция + фильтрация и представляет собой бетонный резервуар, заполненный гравием и песком на высоту 2,3-2,6 м. Вода подается через систему труб в нижнюю часть, а коагулянт вводится непосредственно в трубопровод перед поступлением воды в осветлитель. Коагуляция происходит в нижних частях осветлителя, а в верхних - задерживаются хлопья коагулянта и другие взвешенные вещества.
Специальные методы улучшения качества воды применятся с целью удаления из нее некоторых химических веществ и частично улучшения органолептических свойств.
Дезодорация — устранение запахов. Достигается аэрированием, обработкой окислителями (озонирование, большие дозы хлора, марганцовокислый калий), фильтрованием через активированный уголь.
Обезжелезивание производится путем разбрызгивания воды с целью аэрации в специальных устройствах — градирнях. При этом двухвалентное железо окисляется в гидрат окиси железа, который осаждается в отстойнике и задерживается на фильтре.
Умягчение воды достигается фильтрованием через ионообменные фильтры, загруженные либо катионитами (обмен катионов), либо анионитами (обмен анионов). Происходит обмен ионов Са2+ и Mg2+ на ионы Nа+ или Н+.
Опреснение. Последовательное фильтрование воды сначала через катионит, а затем через анионит позволяет освободить воду от всех растворенных в ней солей. Термический метод опреснения — дистилляция, выпаривание с последующей конденсацией. Вымораживание. Электродиализ — опреснение с использованием селективных мембран.
Деконтаминация. Снижение содержания радиоактивных веществ в воде на 70-80% происходит при коагуляции, отстаивании и фильтровании воды. Для более глубокой деконтаминации воду фильтруют через ионообменные смолы.
Обезфторивание воды проводят фильтрованием через анионообменные фильтры. Часто для этого используют активированную окись алюминия. Иногда для снижения концентрации фтора проводят разбавление водой другого источника, не содержащей фтора либо содержащей его в ничтожных количествах.
Фторирование. Искусственное добавление фтора. Проводят при содержании фтора в воде менее 0,7 мг/л с целью профилактики кариеса зубов. Фторирование воды снижает заболеваемость кариесом на 50-70%, т.е. в 2-4 раза.
22. Методы обеззараживания питьевой воды и их гигиеническая оценка. Способы хлорирования воды. Хлорпоглощаемость и хлорпотребность.
Обеззараживание воды может быть проведено химическими и физическими (безреагентными) методами.
К химическим методам обеззараживания воды относят хлорирование и озонирование. Задача обеззараживания — уничтожение патогенных микроорганизмов, т.е. обеспечение эпидемической безопасности воды.
В настоящее время хлорирование воды является одним из наиболее широко распространенных профилактических мероприятий. Этому способствует доступность метода и надежность обеззараживания, а также многовариантность (везде).
Принцип хлорирования основан на обработке воды хлором или химическими соединениями, содержащими хлор в активной форме, обладающей окислительным и бактерицидным действием.
Химизм происходящих процессов состоит в том, что при добавлении хлора к воде происходит его гидролиз ->
хлорноватистая кислота. Небольшие размеры молекулы и электрическая нейтральность позволяют хлорноватистой кислоте быстро пройти через оболочку бактериальной клетки и воздействовать на клеточные ферменты.
На крупных водопроводах для хлорирования применяют газообразный хлор, поступающий в стальных баллонах или цистернах в сжиженном виде. Используют, как правило, метод нормального хлорирования (по хлорпотребности).
Имеет важное значение выбор дозы, обеспечивающий надежное обеззараживание. При обеззараживании воды хлор не только способствует гибели микроорганизмов, но и взаимодействует с органическими веществами воды и некоторыми солями. Все эти формы связывания хлора объединяются в понятие " хлорпоглощаемость воды ".
В соответствии с СанПиН 2.1.4.559-96 "Питьевая вода..." доза хлора должна быть такой, чтобы после обеззараживания в воде содержалось 0,3-0,5 мг/л свободного остаточного хлора. Этот метод, не ухудшая вкуса воды и не являясь вредным для здоровья, свидетельствует о надежности обеззараживания.
Количество активного хлора в миллиграммах, необходимое для обеззараживания 1 л воды, называют хлорпотребностью.
Кроме правильного выбора дозы хлора, необходимым условием эффективного обеззараживания является хорошее перемешивание воды и достаточное время контакта воды с хлором: летом не менее 30 минут, зимой не менее 1 часа.
Модификации хлорирования: двойное хлорирование, хлорирование с аммонизацией, перехлорирование и др.
Двойное хлорирование предусматривает подачу хлора на водопроводные станции дважды: первый раз перед отстойниками, а второй — как обычно, после фильтров. Это улучшает коагуляцию и обесцвечивание воды, подавляет рост микрофлоры в очистных сооружениях, увеличивает надежность обеззараживания.
Хлорирование с аммонизацией предусматривает введение в обеззараживаемую воду раствора аммиака, а через 0,5-2 минуты — хлора. При этом в воде образуются хлорамины — монохлорамины (NH2Cl) и дихлорамины (NHCl2), которые также обладают бактерицидным действием. Этот метод применяется для обеззараживания воды, содержащей фенолы, с целью предупреждения образования хлорфенолов. Даже в ничтожных концентрациях хлорфенолы придают воде аптечный запах и привкус. Хлорамины же, обладая более слабым окислительным потенциалом, не образуют с фенолами хлорфенолов. Скорость обеззараживания воды хлораминами меньше, чем при использовании хлора, поэтому продолжительность дезинфекций воды должна быть не меньше 2 ч, а остаточный хлор равен 0,8-1,2 мг/л.
Перехлорирование предусматривает добавление к воде заведомо больших доз хлора (10-20 мг/л и более). Это позволяет сократить время контакта воды с хлором до 15-20 мин и получить надежное обеззараживание от всех видов микроорганизмов. По завершении процесса обеззараживания в воде остается большой избыток хлора и возникает необходимость дехлорирования. С этой целью в воду добавляют гипосульфит натрия или фильтруют воду через слой активированного угля.
Перехлорирование применяется преимущественно в экспедициях и военных условиях.
В настоящее время метод озонирования воды является одним из самых перспективных и уже находит применение во многих странах
При разложении озона в воде в качестве промежуточных продуктов образуются короткоживущие свободные радикалы НО2 и ОН. Атомарный кислород и свободные радикалы, являясь сильными окислителями, обусловливают бактерицидные свойства озона.
Наряду с бактерицидным действием озона в процессе обработки воды происходит обесцвечивание и устранение привкусов и запахов.
Преимущества озона перед хлором при обеззараживании воды состоит в том, что озон не образует в воде токсических соединений (хлорорганических соединений, диоксинов, хлорфенолов и др.), улучшает органолептические показатели воды и обеспечивает бактерицидный эффект при меньшем времени контакта (до 10 мин). Он более эффективен по отношению к патогенным простей
Широкое внедрение озонирования в практику обеззараживания воды сдерживается высокой энергоемкостью процесса получения озона и несовершенством аппаратуры.
Олигодинамическое действие серебра в течение длительного времени рассматривалось как средство для обеззараживания преимущественно индивидуальных запасов воды. Серебро обладает выраженным бактериостатическим действием. Даже при введении в воду незначительного количества ионов микроорганизмы прекращают размножение, хотя остаются живыми и даже способными вызвать заболевание. Концентрации серебра, способные вызвать гибель большинства микроорганизмов, при длительном употреблении воды токсичны для человека. Поэтому серебро в основном применяется для консервирования воды при длительном хранении ее в плавании, космонавтике и т.д.
Для обеззараживания индивидуальных запасов воды применяются таблетированные формы, содержащие хлор.
К физическим методам относятся кипячение, облучение ультрафиолетовыми лучами, воздействие ультразвуковыми волнами, токами высокой частоты, гамма-лучами и др.
Преимущество физических методов обеззараживания перед химическими состоит в том, что они не изменяют химического состава воды, не ухудшают ее органолептических свойств. Но из-за их высокой стоимости и необходимости тщательной предварительной подготовки воды в водопроводных конструкциях применяется только ультрафиолетово е облучение, а при местном водоснабжении — кипячение.
Ультрафиолетовые лучи обладают бактерицидным действием. Максимум бактерицидного действия приходится на лучи с длиной волны 260 нм. Динамика отмирания микрофлоры зависит от дозы и исходного содержания микроорганизмов. На эффективность обеззараживания оказывают влияние степень мутности, цветности воды и ее солевой состав.
Ультразвук применяют для обеззараживания бытовых сточных вод, т.к. он эффективен в отношении всех видов микроорганизмов, в том числе и спор бацилл. Его эффективность не зависит от мутности и его применение не
приводит к пенообразованию, которое часто имеет место при обеззараживании бытовых стоков.
Гамма-излучение очень эффективный метод. Эффект мгновенный. Уничтожение всех видов микроорганизмов, однако в практике водопроводов пока не находит применения.
Дата добавления: 2014-12-11 | Просмотры: 1282 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
|