Траектории винеровского процесса удовлетворяют условию Гёльдера
,
где С – некоторая константа, а
1.5. В данном пункте мы покажем, что –алгебра, порожденная винеровским процессом , обладает свойством непрерывности слева и справа.
Обозначим .
Определение. Будем говорить, что фильтрация непрерывна справа (слева), если
Теорема 6. Пусть на стохастическом базисе задан одномерный винеровский процесс . Пусть - фильтрация пополнена множествами нулевой меры Р. Тогда фильтрация непрерывна справа и слева, т.е. для любого . Доказательство. Установим сначала непрерывность слева, т.е. покажем, что . Очевидно, что . Поэтому нам надо доказать, что . Заметим сначала, что числа в силу непрерывности винеровского процесса, , где r - рациональные но тогда , т.е. .
Установим теперь непрерывность справа, т.е. . Очевидно, что . Поэтому надо доказать, что . Пусть . Тогда из определения винеровского процесса следует, что .
Отсюда ясно, что если , то . Следовательно , поэтому P - п. н.
(6)
Пусть . Тогда из (6) имеем P - п. н.
Устремим , имеем P - п. н.
(7)
Сравнивая (6) и (7), видим, что . Отсюда вытекает, что для любой измеримой ограниченной функции f P - п. н. справедливо равенство
. (8)
Пусть теперь и - ограниченные измеримые функции. Тогда в силу марковского свойства винеровского процесса и (8) имеем P - п. н.
Аналогичным образом устанавливается равенство P - п. н. ,
где и - любые измеримые ограниченные функции .Отсюда следует, что для любой -измеримой функции P - п. н. имеем . Беря в качестве измеримую величину, имеем P - п. н. Следовательно, - измерима. Значит, . Доказательство закончено.
Дата добавления: 2015-01-18 | Просмотры: 558 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|