ВРЕМЕННАЯ ОРГАНИЗАЦИЯ КЛЕТКИ
Клеточный цикл – это период жизнедеятельности клетки от момента ее появления до гибели или образования дочерних клеток.
Митотический цикл – это период жизнедеятельности клетки от момента ее образования и до разделения на дочерние клетки. Митотический цикл включает интерфазу и митоз.
1. Интерфаза – это период функционирования и подготовки клетки к делению. Она подразделяется на три периода: пресинтетический (постмитотический) – G1 , синтетический – S и постсинтетический (премитотический) – G2.
Содержание генетической информации в клетке обозначают следующим образом:
n - набор хромосом, хр – число хроматид в одной хромосоме и с – количество ДНК в одной хроматиде.
1.1. Образовавшаяся после митоза клетка содержит диплоидный набор хромосом; каждая хромосома имеет одну хроматиду, 2с ДНК - 2n1xp2c. Такая клетка вступает в пресинтетический период (G1) интерфазы, продолжительность которого колеблется от нескольких часов до нескольких месяцев и даже лет. В этот период клетка выполняет свои функции, увеличивается в размерах, в ней идет синтез белков и нуклеотидов, накапливается энергия в виде АТФ.
1.2. В синтетический период (S) происходит репликация молекул ДНК и ее содержание в клетке удваивается, т.е. каждая хроматида достраивает себе подобную, и генетическая информация к концу этого периода становится: 2n2хр4с. Одновременно клетка продолжает выполнять свои функции. Продолжительность этого периода 6-8 часов.
1.3. В постсинтетический период (G2) клетка готовится к митозу: накапливается энергия, постепенно затухают все синтетические процессы, необходимые для репродукции органоидов, меняется вязкость цитоплазмы и ядерно-цитоплазматическое отношение, клетка прекращает выполнять основные функции, накапливаются белки для построения ахроматинового веретена и удваиваются центриоли. Изменяется вязкость цитоплазмы. Содержание генетической информации не изменяется (2n2хр4с). Клетка вступает в митоз.
2. Митоз – это основной способ деления соматических клеток.
Главными причинами начала митоза являются: 1) изменение ядерно-цитоплазматического отношения (от 1/6-1/8 до 1/69-1/89); 2) «митогенетические лучи» – делящиеся клетки стимулируют к митозу расположенные рядом клетки и 3) «раневые гормоны» – поврежденные клетки выделяют особые вещества, способствующие митозу неповрежденных клеток.
Непрерывный процесс митоза подразделяют на 4 стадии:
1) профазу, 2) метафазу, 3) анафазу и 4) телофазу.
2.1. В профазу происходит увеличение объема ядра, начинается спирализация хроматиновых нитей, расхождение центриолей к полюсам клетки и формирование веретена деления. К концу профазы растворяются ядрышки и ядерная оболочка, хромосомы «выходят» в цитоплазму. К центромерам хромосом прикрепляются нити веретена деления, и хромосомы устремляются к центру клетки. Содержание генетической информации при этом не изменяется (2n2хр4с).
2.2. Метафаза - самая короткая фаза, когда хромосомы располагаются на экваторе клетки. Это стадия наибольшей спирализации хромосом, когда их удобнее всего изучать. Содержание генетической информации остается прежним.
2.3. В анафазе происходит разделение хроматид в области центромер. Нити веретена деления сокращаются, и хроматиды (дочерние хромосомы) расходятся к полюсам клетки. Содержание генетической информации становится 2n1xp2c у каждого полюса.
2.4. В телофазу формируются ядра дочерних клеток: хромосомы деспирализуются, строятся ядерные оболочки, в ядре появляются ядрышки. Митоз заканчивается цитокинезом – делением цитоплазмы материнской клетки. В конечном итоге образуются две дочерние клетки, каждая из которых имеет 2n хромосом, 1 хроматиду в хромосоме и 2с ДНК.
Основное значение митоза заключается в точном распределении генетической информации между дочерними клетками и в поддержании постоянства числа хромосом.
2.5. Митоз – не единственный способ деления клеток. Эукариотические клетки могут делиться и прямым делением - амитозом. Амитоз – прямое деление клеток и ядер, находящихся в условиях физиологической и репаративной регенерации, или опухолевых клеток. При этом не происходит образования видимых хромосом и веретена деления. Типичный амитоз начинается с образования перетяжки ядра, затем – цитоплазмы, и разделения их на две части. В последнее время установлено, что и при амитозе происходит также равномерное распределение генетического материала между дочерними клетками, хотя механизм его не вполне ясен.
2.6. Разновидностями митоза являются эндомитоз, политения и мейоз. При эндомитозе происходит удвоение хромосом без деления ядра, что приводит к образованию полиплоидных клеток. При политении наблюдается многократное удвоение хроматид, но они не расходятся, и в результате образуются политенные (многонитчатые, гигантские) хромосомы, например, в слюнных железах мухи дрозофилы.
3. Мейоз – это деление особых соматических клеток половых желез, в результате которого образуются половые клетки (гаметы). Мейотическое деление протекает в два этапа - мейоз I и мейоз II. Каждое мейотическое деление подразделяют на 4 фазы: профазу, метафазу, анафазу и телофазу.
3.1. Наиболее сложной является профаза мейоза I. Она включает 5 стадий: лептотена, зиготена, пахитена, диплотена и диакинез. Хроматиновые нити спирализуются, утолщаются, укорачиваются и на стадии лептотены становятся различимы в микроскопе. Нитевидные гомологичные хромосомы начинают движение друг к другу центромерными участками. Содержание генетической информации составляет: 2n2хр4с.
На стадии зиготены начинается конъюгация гомологичных хромосом, которые соединяются сначала в области центромер, а затем по всей длине. Содержание генетической информации не изменяется: 2n2хр4с.
На стадии пахитены гомологичные хромосомы тесно соприкасаются по всей длине, образуя биваленты (тетрады хроматид). Число бивалентов соответствует гаплоидному набору хромосом – 1n. В этот период конъюгирующие хромосомы могут обмениваться участками хроматид – происходит кроссинговер. Содержание генетического материала не изменяется, однако его можно записать по-другому – 1nбив 4хр 4с (один бивалент, состоящий из 4-х хроматид и 4 наборов ДНК).
На стадии диплотены между конъюгирующими гомологичными хромосомами в области центромер возникают силы отталкивания, в результате чего хроматиды начинают расходиться, оставаясь соединенными в участках перекрестов – хиазм. Расхождение хроматид продолжается, хиазмы смещаются к их концам. Содержание генетической информации остается прежним (1nбив4хр4с).
На стадии диакинеза завершаются спирализация и укорочение хромосом. Биваленты, соединенные только своими концами, обособляются и располагаются по периферии ядра. В конце профазы растворяются ядрышки и ядерная оболочка. Проконъюгировавшие хромосомы выходят в цитоплазму и движутся к экватору клетки. К центромерам хромосом прикрепляются нити веретена деления. Содержание генетической информации – 1nбив4хр4с.
3.2. В метафазу I в экваториальной плоскости клетки отчетливо видны биваленты, прикрепленные центромерами к нитям веретена деления. Содержание генетической информации остается прежним.
3.3. В анафазу мейоза I гомологичные хромосомы, состоящие из двух хроматид, отходят к противоположным полюсам клетки. Расхождение хромосом носит случайный характер. Содержание генетической информации становится: 1n2хр2с у каждого полюса клетки (в целом в клетке 2(1n2хр2с)).
3.4. Телофаза мейоза I не отличается от таковой митоза (но хромосомы не деспирализуются).
В результате мейоза I образуются две дочерние клетки, содержащие гаплоидный набор хромосом, но каждая хромосома имеет две хроматиды (1n2хр2с). Следовательно, в результате мейоза I происходит редукция (уменьшение вдвое) числа хромосом, откуда и название этого деления - редукционное.
После окончания мейоза I наступает короткий промежуток – интеркинез, в течение которого не происходят репликация ДНК и удвоение хроматид.
3.5. Мейоз II протекает по типу обычного митоза.
Профаза мейоза II непродолжительная, так как хромосомы после телофазы мейоза I остаются спирализованными. Изменений генетического материала не происходит (1n2хр2с). В метафазе мейоза II хромосомы располагаются в экваториальной плоскости клетки. Содержание генетического материала – 1n2хр2с. В анафазу мейоза II к полюсам отходят хроматиды (дочерние хромосомы), и содержание генетического материала становится 1n1хр1с у каждого полюса клетки. В телофазе мейоза II после цитокинеза образуются клетки с гаплоидным набором хромосом, содержащих одну хроматиду (1n1хр1с).
Таким образом, в результате двух последовательных делений мейоза из одной диплоидной клетки образуются 4 гаплоидные.
Значение мейоза: 1) редукция числа хромосом, 2) конъюгация гомологичных хромосом, 3) рекомбинация генетического материала, обусловленная кроссинговером и случайным расхождением гомологичных хромосом.
4. Гаметогенез – это процесс образования гамет (мужских и женских половых клеток). Гаметогенез характеризуется рядом важных биологических процессов.
4.1. Сперматогенез (образование сперматозоидов) протекает в семенных канальцах и несколько отличается от овогенеза (образования яйцеклеток). Наружный слой семенных канальцев представлен диплоидными сперматогониями, которые с наступлением полового созревания организма начинают интенсивно делиться митотически. Эта зона семенника называется зоной размножения. Часть сперматогоний вступает в следующую зону - роста; в них незначительно увеличивается количество цитоплазмы и они превращаются в сперматоциты I порядка. Эти клетки вступают в зону созревания (ближе к центру канальца). Здесь происходит мейоз. В результате первого деления образуются два сперматоцита II порядка, а в результате второго – 4 сперматиды. Сперматиды переходят в зону формирования, где из них образуются сперматозоиды.
4.2. Овогенез протекает в яичниках. Первичные клетки – диплоидные овогонии – проходят период размножения и роста до рождения организма. Мейоз ооцита I порядка начинается на II-IV месяце эмбриогенеза. К моменту рождения мейоз останавливается на длительное время в стадии диакинеза (профаза мейоза I).
В период полового созревания в первой половине каждого лунного месяца лютеинизирующий гормон стимулирует мейоз, и он идет до метафазы мейоза II и опять останавливается. Второе мейотическое деление завершается только после оплодотворения. Оплодотворение происходит, как правило, после первого деления мейоза. В результате мейоза I из овоцитов I порядка образуются овоциты II порядка, а после мейоза II – овотиды, превращающиеся без стадии формирования в яйцеклетки. При делении овоцита I порядка образуется один овоцит II порядка, содержащий основное количество цитоплазмы и одно маленькое редукционное тельце, которое в дальнейшем может разделиться еще раз. При делении овоцита II порядка также образуется редукционное тельце и одна овотида (яйцеклетка).
Таким образом, при овогенезе из одной овогонии образуется одна яйцеклетка и 3 редукционных тельца, которые «забирают» лишнюю генетическую информацию, а при сперматогенезе - из одного сперматогония – 4 сперматозоида.
При сперматогенезе лучше выражен период размножения (сперматозоидов образуется значительно больше, чем яйцеклеток) и период формирования, а при овогенезе - период роста (размеры яйцеклеток значительно больше); при овогенезе практически отсутствует период формирования.
Дата добавления: 2014-11-24 | Просмотры: 2193 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
|