АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

МОРФОФУНКЦИОНАЛЬНЫЙ УРОВЕНЬ

Прочитайте:
  1. A2 (базовый уровень, время – 2 мин)
  2. B9 (повышенный уровень, время – 3 мин)
  3. S:Уровень гранулоцитов, при котором можно говорить о наличии агранулоцитоза?
  4. А что, если уровень холестерина не опустится ниже этих самых 150 мг/дл?
  5. Базовый уровень подготовки
  6. Влияние характеристик стрессора на уровень стресса
  7. Высокий уровень структурной интеграции
  8. Высокий уровень структурной интеграции
  9. Высокий уровень структурной интеграции
  10. Генетический уровень

Мозг современного человека высоко дифференцирован. Он состо­ит из множества относительно мелких и крупных структурных образо­ваний, объединенных в ряд морфофункциональных блоков. В соответ­ствии с данными многих экспериментальных и клинических исследо­ваний каждому из блоков приписываются разные функции.

Так, в стволе и подкорковых структурах мозга локализованы цен­тры, регулирующие витальные функции организма. Кроме того, к их функциям относятся: обеспечение тонизирующих и модулирующих влияний на разные уровни ЦНС, формирование биологических по­требностей и мотиваций, побуждающих организм к действию (голод, жажда и др.), а также эмоций, сигнализирующих об успехе или не-

удаче в удовлетворении этих потребностей. Кора больших полушарий играет определяющую роль в обеспечении высших психических фун­кций человека. В самом общем виде она (1) осуществляет прием и окончательную переработку информации, а также (2) организует на этой основе сложные формы поведения, причем первая функция свя­зана преимущественно с деятельностью «задних» отделов коры, а вто­рая—с деятельностью «передних». Разные функции выполняют левое и правое полушария. Например, у «правшей» центры, управляющие ведущей правой рукой и речью, локализованы в левом полушарии.

Обобщенной морфологической характеристикой мозга служит его вес. Индивидуальные различия абсолютного веса мозга взрослых лю­дей очень велики. При средних значениях 1400—1500 г диапазон край­них индивидуальных значений (из изученных) колеблется в пределах: от 2012 г (у И.С. Тургенева) до 1017 г. (у А. Франса). Коэффициент вариативности, по обобщенным данным, составляет приблизительно 8%. У мужчин вес мозга в среднем на 200 г больше, чем у женщин. Вес мозга почти не зависит от размеров тела, но положительно коррели­рует с размерами черепа.

Различия по весу мозга, по-видимому, в определенной степени обуслов­лены генетическими факторами. Об этом свидетельствуют специально выве­денные линии мышей — с «высоким» и «низким» весом мозга. У первых мас­са мозга приблизительно в 1,5 больше, чем у вторых. Попытки установить связь между весом мозга и успешностью обучения мышей однозначных ре­зультатов не дали.

Вариабельность борозд и извилин на поверхности мозга чрезвы­чайно велика. Как подчеркивают морфологи, не обнаружено двух оди­наковых экземпляров мозга с полностью совпадающим рисунком по­верхности. Например, С.М. Блинков пишет: «Рисунок борозд и изви­лин на поверхности коры больших полушарий мозга у людей столь же различен, как их лица, и также отличается некоторым семейным сход­ством» [17, с. 24]. Одни борозды и извилины, в основном наиболее крупные, встречаются в каждом мозге, другие не столь постоянны. Вариабельность борозд и извилин проявляется в их длине, глубине, прерывистости и многих других более частных особенностях [17].

Индивидуальная специфичность характерна и для подкорковых об­разований, глубоких структур мозга, а также проводящих путей, соеди­няющих разные отделы мозга [139]. В то же время многообразие индиви­дуальных различий в строении коры и других образований мозга всегда находится в пределах общего плана строения, присущего человеку.

Индивидуальные различия в строении мозга дают основания для попыток связать их с индивидуально-психологическими различиями. Большое внимание уделялось поиску морфологических и цитоархи-тектонических (клеточных) оснований индивидуальных особеннос­тей умственного развития, в первую очередь одаренности. Было уста-

18-1432

новлено, что вес мозга не связан с умственным развитием человека. Наряду с этим при анализе особенностей клеточного строения коры больших полушарий обнаружили, что индивидуальным особенностям психической деятельности соответствуют определенные соотношения в развитии проекционных и ассоциативных областей.

Так, постмортальные исследования мозга людей, которые обла­дали выдающимися способностями, демонстрируют связь между спе­цификой их одаренности и морфологическими особенностями мозга, в первую очередь — с размерами нейронов в так называемом рецеп­тивном слое коры. Например, анализ мозга выдающегося физика А. Эйнштейна показал, что именно в тех областях, где следовало ожи­дать максимальных изменений (передние ассоциативные зоны левого полушария, предположительно отвечающие за абстрактно-логичес­кое мышление), рецептивный слой коры был в два раза толще обыч­ного. Кроме того, там же было обнаружено значительно превосходя­щее статистическую норму число так называемых глиальных клеток, которые обслуживали метаболические нужды нейронов. Характерно, что в других отделах мозга Эйнштейна особых отличий не выявлено [418].

Предполагается, что столь неравномерное развитие мозга связано с перераспределением его ресурсов (медиаторов, нейропептидов и т.д.) в пользу наиболее интенсивно работающих отделов. Особую роль здесь играет перераспределение ресурсов медиатора ацетилхолина. Холинэр-гическая система мозга, в которой ацетилхолин служит посредником проведения нервных импульсов, по некоторым представлениям, обес­печивает информационную составляющую процессов обучения [82]. Эти данные свидетельствуют о том, что индивидуальные различия в умственной деятельности человека, по-видимому, связаны с особен­ностями обмена веществ в мозге.

Структурная индивидуализированность мозга, неповторимость топографических особенностей у каждого человека складывается в онтогенезе постепенно [171, 172]. Вопрос о том, как влияют генети­ческие особенности на формирование индивидуализированности моз­га, пока остается открытым. По-видимому, в формировании этих мор­фологических характеристик играют роль генетические факторы. На­пример, отмечается семейное сходство в рисунке борозд коры мозга. Кроме того, при сравнении мозга МЗ близнецов обнаружено доволь­но значительное сходство морфологических особенностей, причем в левом полушарии больше, чем в правом [427].

Наряду с этим существуют традиционные и разработанные мето­ды неинвазивного изучения функциональной активности мозга. Речь идет о методах регистрации биоэлектрической активности мозга, в первую очередь коры больших полушарий. Методы регистрации энце­фалограммы и вызванных потенциалов позволяют зарегистрировать активность отдельных зон коры больших полушарий, оценить инди­видуальную специфичность этой активности как качественно, так и

количественно и применить к полученным результатам генетико-ста-тистический анализ. По совокупности таких данных можно судить о роли генетических факторов в происхождении индивидуальных осо­бенностей функциональной активности отдельных областей коры как в состоянии покоя, так и в процессе деятельности. Итоги конкретных исследований изложены в гл. XIII и XIV.

СИСТЕМНЫЙ УРОВЕНЬ

В широком понимании живая система представляет собой сово­купность взаимосвязанных элементов, которые обладают способнос­тью к совместному функционированию и приобретению свойств, не присущих отдельным входящим в ее состав элементам. В настоящее время принято считать, что мозг представляет собой «сверхсистему», состоящую из множества систем и сетей взаимосвязанных нервных клеток и структурных образований более высокого уровня.

Морфологически в строении мозга выделяются два типа систем: микро- и макросистемы. Первые представляет собой совокупность популяций нервных клеток, осуществляющих относительно элемен­тарные функции. Примером микросистем могут служить нейронный модуль (вертикально организованная колонка нейронов и их отрост­ков в коре больших полушарий) или гнезда взаимосвязанных нейро­нов и глиальных клеток в подкорковых структурах. Предполагается, что таким микроансамблям свойственна преимущественно жесткая ге­нетически детерминированная форма конструкции и активности [176].

Сходные по своим функциям микроансамбли, или микросисте­мы, объединяются в макросистемы, сопоставимые с отдельными струк­турными образованиями мозга. Например, отдельные зоны коры больших полушарий, имеющие разное клеточное строение (цитоар-хитектонику), представляют собой разные макросистемы. Сюда же от­носятся системы подкорковых и стволовых образований, корково-под-корковые системы мозга [139].

Современная наука располагает методами, позволяющими экспе­риментально изучать некоторые аспекты функционирования мозго­вых систем. Речь идет об уже упоминавшихся ранее электрофизиоло­гических методах: электроэнцефалограмме и вызванных потенциалах. Исходно энцефалограмма характеризует специфику функциональной активности той зоны мозга, где она регистрируется. Однако наряду с этим разработаны способы оценки взаимосвязанности локальных по­казателей биоэлектрической активности мозга при регистрации ее в разных отделах. В основе данного подхода лежит простая логика: если мозг работает как целое (система), то изменения в активности от­дельных элементов системы должны иметь взаимосвязанный характер. Подробнее речь о них пойдет в гл. XIII, здесь же подчеркнем, что электрофизиологические показатели взаимодействия разных зон коры

18* 275

в покое и при реализации той или иной деятельности демонстрируют значительную межиндивидуальную вариативность. Последнее дает ос­нование ставить вопрос о роли факторов генотипа и среды в проис­хождении этой вариативности. Другими словами, используя генети-ко-статистический анализ, можно выявить причины межиндивиду­альной вариативности не только локальных электрофизиологических показателей, но и производных от них показателей, отражающих сте­пень взаимосвязанности последних, т.е. работу мозговых систем.


Дата добавления: 2015-09-27 | Просмотры: 646 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)