АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Особенности структуры и функционирования генетического аппарата у эукариот, прокариот, ДНК- и РНК- содержащих вирусов.

Прочитайте:
  1. II. Производные различной химической структуры
  2. L-формы бактерий, их особенности и роль в патологии человека. Факторы, способствующие образованию L-форм. Микоплазмы и заболевания, вызываемые ими.
  3. V. ТРАНКВИЛИЗАТОРЫ НЕБЕНЗАДИАЗЕПИНОВОЙ СТРУКТУРЫ.
  4. VI. ЛС, применяемые для лечения заболеваний опорно-двигательного аппарата
  5. А. Осаждение графитизированных слоёв при термораспаде С - содержащих газов на поверхности металлических образцов
  6. А. Особенности мезенхимальных опухолей.
  7. Аберрации (изменения числа или структуры) Х-хромосом
  8. Актиномицеты. Особенности морфологии и ультраструктуры. Сходство с грибами и отличия от грибов. Способы микроскопического изучения.
  9. Анатомо - топографические особенности решетчатого лабиринта могут способствовать переходу патологических процессов в глазницу, полость черепа, на зрительный нерв.
  10. АНАТОМО – ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ.

В состав нуклеотида бактерий входят ДНК, РНК и белки. Число нуклеотидов в бактериальной клетке может варьировать от одного (в культурах, находящихся в стационарной фазе роста) до двух (в стадии задержки размножения после переноса клеток в свежую среду) и четырех (в культурах с постоянной скоростью роста). Каждый нуклеотид содержит двухцепочечную замкнутую в кольцо молекулу ДНК. В молекуле ДНК нуклеотида закодирована вся генетическая информация, необходимая для жизнедеятельности клетки, поэтому нуклеотид рассматривают как бактериальную хромосому. Хромосомы имеют кольцевое строение. Гигантская молекула ДНК бактериальной хромосомы поддерживается связанными с ней молекулами РНК и белка в форме компактной структуры, свернутой в отдельные сверхспирализованные петли (домены), число которых колеблется от 12 до 80.

Помимо хромосомной ДНК в состав генома многих прокариот входят также сверхскрученные, ковалентно-замкнутые кольцевые молекулы внехромосомной, или плазмидной, ДНК.

Способы передачи наследственной информации у бактерий:

1. трансформация – перенос изолированных фрагментов молекулы ДНК из одного организма к другому.

2. трансдукция это способность переносить наследственную информацию от одного организма к другому при помощи вирусов.

3. конъюгация – обмен наследственной информацией.

Вирусы, представляют собой частицы (вирионы), стоящие на грани между живой и неживой природой и обладающие инфекционными свойствами. В дословном переводе термин «вирус» обозначает яд, ядовитое вещество.

Генетический материал вируса представлен одной молекулой нуклеиновой кислоты, ДНК или РНК, не связанной с белком. В связи с этим вирусы подразделяются на ДНК- и РНК-содержащие. Вирусы бактерий чаще содержат ДНК, а почти все вирусы растений и подавляющее большинство вирусов человека – РНК.

Нуклеиновая кислота вируса бывает одно- или двухцепочечной и может иметь кольцевую или линейную форму. Кольцевая форма ДНК более стабильна и свойственна большинству вирусов. Кольцо ДНК (РНК) обычно бывает перекручено, поэтому она имеет суперспирализованный вид.

В нуклеиновой кислоте вируса закодирована информация о всех его структурных белках. Многие вирусы содержат гены специфических полимераз (репликаз) — ферментов, контролирующих репликацию молекул нуклеиновых кислот. Но чаще вирусы используют для репликации ферментов клетки-хозяина. Некоторые мелкие вирусы содержат только три гена. Гены вирусов могут существовать в виде фрагментов ДНК, разделенных генетически инертными нуклеотидными последовательностями. Эти последовательности в момент работы генов «вырезаются», и целостность генетической информации восстанавливается.

Генетическое вещество у вирусов заключено в белковую оболочку, которая вместе с нуклеиновой кислотой образует так называемый капсид или нуклеокапсид. Большинство вирусов растений и РНК-содержащих бактериальных фагов состоит только из нуклеиновой кислоты и белка.

29. Определение понятия "фенотип" и формы фенотипической изменчивости. Фенотипическая изменчивость у эукариот, формы проявления.

Фенотип бактерии – результат взаимодействия между бактерией и окружающей средой, который контролирует геном.

Фенотипическая изменчивость — модификация не затрагива­ет генотип, но затрагивает большинство особей популяции. Модификации не передаются по наследству и с течением вре­мени затухают, т. е. возвращаются к исходному фенотипу через большее (длительные модификации) или меньшее (кратковре­менные модификации) число поколений.

Они могут возникать в популяции любого вида, и их проявления в мире бактерий наблюдают довольно часто. Они в целом контролируются генофором бактерий, но (в отличие от мутаций) не сопровождаются изменениями кодирующей струк­туры и утрачиваются при прекращении действия вызвавших их факторов. У бактерий наблюдают морфологические (приводящие к обратимым изменениям формы) и биохимические (приводящие к синтезу некоторых продуктов, чаще ферментов) модификации. По существу, модификации возникают как адаптивные реакции бактериальных клеток на изменения окружа­ющей среды, что позволяет им быстро приспосабливаться благодаря чему сохраняется опреде­лённая численность популяции. После устранения соответствующего воздействия, вызвавшего их образование, бактерии возвращаются к исходному фенотипу. Примером адаптации микроор­ганизмов может служить способность патогенных микроорганизмов образовывать под действи­ем пенициллина L-формы, у которых отсутствует клеточная стенка, служащая мишенью для пенициллина.


Дата добавления: 2015-09-27 | Просмотры: 837 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)