Метод математической индукции
Во многих разделах математики приходится доказывать истинность утверждения, зависящего от , т.е. истинность высказывания p(n) для " n ÎN (для любого n ÎN p(n) верно).
Часто это удается доказать методом математической индукции.
В основе этого метода лежит принцип математической индукции. Обычно он выбирается в качестве одной из аксиом арифметики и, следовательно, принимается без доказательства. Согласно принципу математической индукции предложение p(n) считается истинным для всех натуральных значений переменной, если выполнены два условия:
1. Предложение p(n) истинно для n = 1.
2. Из предложения, что p(n) истинно для n = k (k - произвольное натуральное число) следует, что оно истинно для n = k + 1.
Под методом математической индукции понимают следующий способ доказательства
1. Проверяют истинность утверждения для n = 1 – база индукции.
2. Предполагают, что утверждение верно для n = k – индуктивное предположение.
3. Доказывают, что тогда оно верно и для n = k + 1 индуктивный переход.
Иногда предложение p(n) оказывается верным не для всех натуральных n, а начиная с некоторого для n = n 0. В этом случае в базе индукции проверяется истинность p(n) при n = n 0.
Пример 1. Пусть . Доказать, что
1. База индукции: при n = 1 по определению S 1 = 1 и по формуле получаем один результат. Утверждение верно.
2. Индуктивное предположение. Пусть n = k и .
3. Индуктивный переход. Пусть n = k + 1. Докажем, что .
Действительно, в силу индуктивного предположения
Преобразуем это выражение
Индуктивный переход доказан.
Замечание. Полезно записать, что дано (индуктивное предположение) и что нужно доказать!
Пример 2. Доказать
.
1. База индукции. При n = 1, утверждение, очевидно, верно.
2. Индуктивное предположение. Пусть n = k и
3. Индуктивный переход. Пусть n = k + 1. Докажем:
Действительно, возведем правую сторону в квадрат как сумму двух чисел:
Используя индуктивное предположение и формулу суммы арифметической прогрессии: , получим
Пример 3. Доказать неравенство
для .
1. Базой индукции в этом случае является проверка истинности утверждения для , т.е. необходимо проверить неравенство . Для этого достаточно возвести неравенство в квадрат: или 63 < 64 – неравенство верно.
2. Пусть неравенство верно для , т.е.
.
3. Пусть , докажем:
.
Используем предположение индукции
Зная как должна выглядеть правая сторона в доказываемом неравенстве выделим эту часть
Остается установить, что лишний множитель не превосходит единицы. Действительно,
.
Пример 4. Доказать, что при любом натуральном число оканчивается цифрой .
1. Наименьшее натуральное , с которого справедливо утверждение, равно . .
2. Пусть при число оканчивается на . Это означает, что это число можно записать в виде , где – какое-то натуральное число. Тогда .
3. Пусть . Докажем, что оканчивается на . Используя полученное представление, получим
Последнее число имеет ровно единиц.
Дата добавления: 2015-09-27 | Просмотры: 460 | Нарушение авторских прав
|