АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Дерминация пола и механизм его наследования

Прочитайте:
  1. A) промежуточного наследования
  2. Адаптация рецепторов и ее механизмы.
  3. Адаптивный ответ, его неспецифичность. Примеры. Механизмы.
  4. Аккомодация, ее механизмы и объем.
  5. Активный и пассивный ионный транспорт. Функциональная роль и механизм работы ионных каналов и насосов.
  6. Аллополиплоидия. Мейоз и наследование у аллополиплоидов. Амфидиплоидия как механизм получения плодовитых аллополиплоидов.
  7. Антисептики из группы галоидов: основные представители, механизм действия, показания к применению
  8. Аутогемотерапия. Механизм действия, техника применения
  9. Аутогемотрансфузия. Механизм действия, показания и противопоказания
  10. Аутоиммунные заболевания. Механизм развития.

ДЕТЕРМ ПОЛА: В ходе эволюции у большинства раздельнополых ор­ганизмов сформировался механизм детерминации пола, обес­печивающий образование равного количества самцов и самок, что необходимо для нормального самовоспроизве­дения вида. Детерминация пола может происходить на разных этапах размножения.

Схема образования гамет в мейозе самцов и самок, определе­ния пола при оплодотворении следующая:

 

Существует равная вероятность закладки особи мужского или женского пола, так как число сперматозоидов у самцов (яйце­клеток у птиц) с Х- и Y-хромосомами одинаково.

Самцов обычно рождается на несколько процентов больше, чем самок, но в ходе эволюции выработался механизм сохране­ния числового соотношения полов, поэтому к возрасту половой и физиологической зрелости это соотношение выравнивается вследствие более высокой смертности самцов.

В процессе индивидуального развития (онтогенеза) происхо­дит дифференциация пола — формирование первичных и вто­ричных половых признаков, которые приводят к возникновению полового диморфизма, т. е. различию между особями противопо­ложных полов по внешним признакам (пропорции телосложе­ния, масса, окраска шерсти, перьев, наличие или отсутствие вымени, различие в строении половых органов и т. д.). Так, самцы сельскохозяйственных животных всех видов крупнее самок, имеют более мужественный вид — массивную голову, пе­редняя часть туловища у них развита сильнее задней и т. д. У самок лучше развита задняя часть туловища, выражены органы, связанные с осуществлением детородной функции и выкармли­ванием приплода.

У животных нередко нарушено развитие признаков пола. Важный вклад в объяснение причин такого рода патологии внес­ли исследования Бриджеса и Гольдшмидта. Изучая явления пер­вичного и вторичного нерасхождения половых хромосом у мухи-дрозофилы, Бриджес обнаружил у них изменения первичных и вторичных половых признаков, что зависело от числа половых хромосом и их отношения к числу аутосом в кариотипе (табл

5). Интерсексуальные особи имели переходные формы между сам­цами и самками; «сверхсамки» и «сверхсамцы» характеризова­лись резко выраженными женскими или мужскими признаками. На основании результатов этих исследований Бриджес пришел к выводу, что пол особи определяется отношением числа Х-хромо­сом к числу аутосом (А). У нормальных самок отношение числа X: А равно 1, а у самцов 0,5. Эксперименты Бриджеса показали, что у дрозофил Х-хромосома не содержит генов, определяющих пол. Исходя из этих данных, Бриджес сформулировал теорию пола, суть которой состоит в том, что развитие половых признаков зависит от баланса генов, контролирующих их развитие.

 

Нарушения в системе половых хромосом. В процессе изучения кариотипов животных были выявлены аномалии в системе поло­вых хромосом, связанные в основном с нарушениями расхожде­ния в мейозе, а также в результате обмена клетками разных индивидуумов. В таблице 6 дана сводка таких нарушений и их связь с фенотипом. Как видно из ее данных, нарушения в систе­ме половых хромосом приводят к резко выраженным нарушени­ям воспроизводительных функций у животных.

Половой хроматин. В ядрах интерфазных клеток у нормальных

особей женского пола очень часто обнаруживают небольшую глыбку хроматина, лежащую у ядерной оболочки или представ­ленную в форме барабанной палочки, прикрепленной тонкой нитью к ядру. Барр и Бертрам, впервые обнаружившие это тель­це, назвали его «сателлитом ядра». Лайон установила, что эта глыбка хроматина представляет собой одну из двух Х-хромосом, которая находится во время интерфазы в гетеропикнотическом состоянии. Положительный гетеропикноз, по гипотезе Лайон, свидетельствует о генетической инактивации одной из Х-хромо­сом кариотипа женского пола. Ввиду того что это тельце встре­чается только в ядрах клеток самок, его рассматривают как при­знак, отличающий клетки самок от клеток самца, и называют половым хроматином или тельцем Барра.

 

Этот признак можно использовать для изучения нарушений в системе половых хромосом, в диагностике пола при интерсексу­альности. Количество телец Барра всегда на единицу меньше числа Х-хромосом. Так, если у самок обнаруживается два тельца Барра, то они являются носителями трисомии по Х-хромосоме. Если половой хроматин отсутствует, то у особи женского пола имеется только одна Х-хромосома. Если у самца обнаруживают тельце Барра, это значит, что у него в кариотипе не одна, а две Х-хромосомы.

Для исследования полового хроматина используют клетки лейкоцитов, слизистых полостей и др.

Интерсексуальность у животных. Влияние внутренней среды организма на изменение признаков пола в онтогенезе прослежи­вается при изучении интерсексуальности. У домашних животных существуют разные формы интерсексуальности, которые объеди­няются под названием гермафродитизм. Кроме того, обнаружены отдельные формы, очень сходные с известными синдромами Клайнфельтера и Тернера.

Образование гермафродитов — особей, имеющих гонады и (или) половые органы противоположного пола, рассматриваются как результат нарушения мейоза в период развития бластоцисты.

Синдром Клайнфельтера характеризуется недораз­витием гонад, повышением выделения гонадотропина и другими изменениями. Классической формой кариотипа синдрома Клайнфельтера является 2п (аутосом) + XXY. Однако часто в кариотипе обнаруживают мозаицизм по половым хромосомам: XXY/XY/XX и трисомию XXX (синдром «трипло-Х»). У крупно­го рогатого скота XXY-синдром наблюдали в сочетании с Х-трисомией. Характерными

признаками животных были нарушения роста и развития, двусторонняя гипоплазия семенников с олиго- и некроспермией и другими изменениями.

Возникновение синдрома Клайнфельтера связано с нерасхож­дением половых хромосом в мейозе. Примечательной особеннос­тью фенотипа при этом синдроме является то, что животные при наличии даже двух Х-хромосом и одной Y-хромосомы имеют признаки мужского пола, хотя и стерильные. При отсутствии Y-хромосомы животные имеют женский фенотип. Это указывает на то, что Y-хромосома у животных содержит гены, контроли­рующие развитие мужского пола и плодовитость.

Синдром Тернера характеризуется женским фенотипом с дисгенезией гонад и другими генитальными дефектами. Цитогенетически синдром Тернера определяется формулой 2л (ауто­сом) + ХО (отсутствует вторая Х-хромосома).

Животных с признаками гермафродитизма, а также носителей синдромов Клайнфельтера и Тернера следует своевременно вы­делять в группы откорма.

Фримартинизм — особая форма интерсексуальности, выявляемая у крупного рогатого скота. Наблюдения показывают, что бесплодные телки — фримартины рождаются в двойне с быч­ком. Установлено, что в среднем 95 % телок из разнополых двоен имеют признаки фримартинизма. У них часто обнаружива­ют мужской тип экстерьера, недоразвитие матки и др.

Для объяснения причин бесплодия телок - фримартинов уче­ные выдвигают разные теории. Основные из них — гормональная и клеточная. Гормональная теория предполагает возникновение фримартинизма вследствие слияния плодного мешка при бере­менности двойней и образования анастомозов между плацентар­ными сосудами разнополых плодов, по которым осуществляется обмен мужскими гормонами — андрогенами (тестостерон) и женскими — эстрогенами. Поскольку мужской гормон тестосте­рон начинает продуцироваться раньше, то длительное воздейст­вие на женские половые органы приводит к вирилизации (недо­развитию) последних, отклонениям в сторону мужского пола и рождению, наконец, бесплодных телок. Клеточная теория исхо­дит из того, что при плацентарных анастомозах происходит обмен не только гормонами, но и другими элементами. Так, у телок - фримартинов был обнаружен химеризм по эритроцитарным антигенам и по половым хромосомам (рис. 16).

Химеризм по половым хромосомам наблюдается и у быков из разнополых двоен. У бычков на племпредприятиях частота химеизма в среднем составляла 1,5 %, у отдельных из них — свыше % (А

И. Жигачев и др., 1989). Эти животные часто имеют нарушения воспроизводительной функции — от снижения коли­чества спермиев в эякуляте и пониженной оплодотворяющей способности до полного бесплодия.

 

Степень нарушения плодо­витости связана, очевидно, с временем образования сосудистых анастомозов во время внутриутробного развития быков химериков. Химеризм по половым хромосомам наблюдается не только в двойнях, но и в отелах коров с большим числом телят разного пола. Присутствие Y-хромосомы в кариотипе телок-фримартинов и изменение у них признаков в сторону мужского пола — явное свидетельство ее влияния на половые признаки. Цитогене­тический анализ — надежный метод ранней диагностики фри-мартинизма у телок. Выявление химеризма XY/XX-хромосом у быков — это критерий малопригодное их в воспроизводстве.

Химеризм по половым хромосомам обнаружен также у коз, овец, свиней, норок. В некоторых породах коз (зааненская, тогденбургская) интерсексуальность встречается довольно часто — 6,5—8,4 %. Этот признак связан с животных.

По данным Г. И. Исаевой и Д. К. Беляева, химеризм наибо­лее часто регистрировали у норок, гомозиготных или гетерози­готных по генам алеутской окраски или хедлунд.

Причины более высокой смертности среди самцов млекопита­ющих можно объяснить исходя из особенностей наследования признаков, сцепленных с полом. Явление сцепленного с полом наследования впервые открыл Т. Морган при скрещивании мух-дрозофил с красной и белой окраской глаз. Если в скрещивании участвовали красноглазые самки и белоглазые самцы, все потом­ство рождалось красноглазым. Во втором же поколении наблюда­лось расщепление в соотношении 3:1. Но в отличие от мендельского моногибридного скрещивания расщепление было только среди самцов: одна половина из них была с белыми глазами и другая — с красными; все самки были красноглазыми. При обрат­ном (реципрокном) скрещивании белоглазых самок с красногла­зыми самцами картина была иной: все самки имели красные глаза, самцы — белые. При скрещивании этих особей во втором поколении половина самцов и самок рождалась красноглазыми. Признаки, расщепление по которым при скрещивании связано с полом, называют сцепленными с полом. Эти признаки обусловлива­ются генами, локализованными в половых хромосомах. Установ­лено, что наследование их зависит в основном от Х-хромосомы Y-Хромосома имеет небольшие размеры, состоит преимуществен­но из гетерохроматина и является генетически инертной, за ис­ключением, возможно, некоторых генов, контролирующих вос­производительную функцию и признаки пола. У самцов млекопи­тающих гены, локализованные в Х-хромосоме, не имеют доминантных или рецессивных партнеров (аллелей) на Y-хромосоме. Рецессивные гены у них проявляют свое действие уже в одинарной дозе (гемизиготном состоянии) по типу доминантного.

Практическое использование сцепленного с полом наследова­ния признаков. В птицеводстве оказалась полезной рецессивная, сцепленная с Х-хромосомой мутация карликовости. Карликовые куры отличаются от нормальных лучшей оплатой корма продук­цией, для них требуется меньшая площадь содержания. Они резистентны к отдельным болезням.

В шелководстве получил распространение метод использова­ния сцепленных с полом деталей для получения гусениц только мужского пола, дающих более крупные коконы, содержащие Шелка на 25—30 % больше, чем коконы гусениц самок. Для этого В. А. Струнников вывел линию, сбалансированную по двум Z-деталям с помощью транслокации (переноса) фрагмента половой Z-хромосомы на W-хромосому

При скрещивании сам­цов с одной неаллельной деталью в каждой из двух хромосом (а и Ь) с самками без транслокаций рождаются только самцы:

 

ми в половой хромосоме. Как правило, они имеют рецессивный характер проявления, и при этом поражаются преимущественно особи гетерогамного пола: у млекопитающих — самцы, у птиц — самки. Сцепленные с полом летальные и сублетальные аномалии изменяют численное соотношение полов при рождении или после него вследствие гибели или браковки у млекопитающих самцов, у птиц — самок. Например, А. И. Жигачевым установле­но, что такая аномалия, как врожденная деформация передних конечностей в сочетании с анкилозом суставов, изученная у животных черно-пестрой, сычевской и костромской пород, про­является, как правило, у бычков, родственных между собой, что указывает на сцепленное с полом наследование.

Наследование признаков, контролируемых генами, локализован­ными в аутосомах, но фенотипически проявляющихся исключитель­но или преимущественно у одного пола, — есть наследование, огра­ниченное полом. Расщепление по таким признакам соответствует правилам Менделя. Выделяют также признаки, контролируемые полом. Они обусловлены генами, локализованными в половых хромосомах, но проявляются у обоих полов по-разному. К числу патологических, или нежелательных, признаков, ограниченных полом, у животных можно отнести гипоплазию вымени и со­сков, гипоплазию гонад (семенников и яичников), крипторхизм, недоразвитие разных частей половых органов у телок (наблюдае­мое преимущественно у животных белой масти), сужения пря­мой кишки и матки у коров, аплазию сегментных протоков Вольфа, затянувшуюся беременность у самок, аномалии сперма­тозоидов у самцов и др. Большинство из указанных аномалий вызывает частичное или полное нарушение воспроизводительной функции . Проблема регуляции пола вытекает из необходимости увели­чения продукции животноводства за счет преимущественного получения особей одного вида, дающих более высокий выход молока, мяса, шерсти, яиц и т. д. Так, в молочном скотоводстве более желательно рождение телочек, а в мясном — бычков, так как они быстрее растут. От высокоценных племенных быков и коров целесообразно получать мужских потомков для более бы­строго размножения их генотипов. В яичном птицеводстве эко­номически более выгодно получение курочек. В связи с этими практическими потребностями исследователи не только стремят­ся познать механизмы определения пола, но и изучают возмож­ности искусственного регулирования пола.

Необходимо отметить, что в отношении крупных животных с внутриутробным развитием плодов эта проблема еще не решена. Регуляция соотношения полов у млекопитающих может быть достигнута путем разделения спермы на две фракции: первую — содержащую в спермиях Х-хромосому и вторую — содержащую Y-хромосому. Оплодотворение самок одной из этих фракций будет давать приплод одного пола. Проводились эксперименты по разделению спермы на указанные фракции центрифугирова­нием, электрофорезом и седиментацией (осаждением) с помо­щью аминокислот гистидина

Осеменение самок крольчих, на­пример, более легкой и более подвижной фракцией приводило к сдвигу в сторону мужского пола. Однако полного сдвига в соот­ношении полов сделано не было. Разрабатывается метод количе­ственного определения ДНК в спермиях путем измерения интен­сивности флуоресценции ядер. Полученные результаты, как счи­тают авторы этого метода, могут стать предпосылкой для успешного разделения спермиев у млекопитающих на несущие X-или Y-хромосому.

Партеногенез. Это развитие организма без оплодотворения. Получение особей одного пола может быть достигнуто при раз­витии эмбрионов из отцовских (андрогенез) или материнских (гиногенез) гамет. Так, под руководством Б. Л. Астаурова были проведены эксперименты по андрогенезу у тутового шелкопряда. Неоплодотворенные яйца шелкопряда подвергали тепловому шоку и облучали рентгеном, тем самым разрушали их ядра, не повредив цитоплазму. Затем эти яйца осеменяли. Зигота форми­ровалась путем слияния ядер двух проникших в яйцо спермиев, развившиеся из нее особи имели признаки только отцовского вида.

В другом варианте экспериментов неоплодотворенные и еще не прошедшие редукционного деления яйца нагревали, останав­ливая тем самым мейоз и сохраняя диплоидность набора хромо­сом. Из таких яиц без оплодотворения (партеногенетически) раз­вивались только самки, унаследовавшие признаки матери. Девст­венное развитие (партеногенез) в естественных или спонтанных условиях встречается у птиц. И. В. Кудрявцев, 3. А. Ощепкова, А. К. Голубев и др. на основании экспериментов, проведенных на курах разных пород, пришли к выводу, что существуют гене­тические предпосылки селекции на получение жизнеспособных особей — партеногенов и создание линий с высокой предраспо­ложенностью к партеногенезу. При этом все вылупляющиеся цыплята оказываются петушками. Отбор на повышение частоты партеногенеза, проведенный в двух линиях индеек, дал следую­щие результаты. Способность яиц к партеногенезу возросла с 1,1 до 18,6 % в первой линии ис4до21,1%во второй. Значение партеногенеза не только в том, что он позволяет получить потом­ство одного пола, но и в том, что использование этого явления дает возможность получить особей, идентичных генотипу одной из родительских форм.

 

Билет 18

 

Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.

Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.

Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием W-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.

Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.

Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей.

Примеры заболеваний человека, сцепленных с полом[править | править вики-текст]

· Гемофилия A

· Гемофилия В

· Дальтонизм

· Лекарственная гемолитическая анемия, связанная с дефицитом глюкозо-6-фосфатдегидрогеназы (Г6ФД)

· Синдром Леша-Найхана

· X-связанный ихтиоз

 

Билет 19

 

Биологическая роль нуклеиновых кислот заключается в том, что ДНК хранит наследственную информацию организма в виде последовательности дезоксирибонуклеотидов, различающихся азотистыми основаниями. В ДНК в закодированном виде записан соста всех белков организма. Каждой аминокислоте, входящей в состав белков, соответствует свой код в ДНК, а именно - три конкретных нуклеотида. Молекулы РНК переносят информацию от ДНК к местам клетки, где происходит синтез белка.

Первичная структура НК - это последовательность расположения мононуклеотидов в полинуклеотидной цепи (рис. 4.4.1.).

 

Вторичная структура - молекула, состоящая из двух (ДНК) или одной (РНК) правозакрученных вокруг воображаемой оси спиралей. В ДНК направление фосфотиэфидных связей(3'-5') антипараллельно. Третичная структура НК - это кольцо из ДНК, что имеет место у бактерий и вирусов. Функции нуклеиновых кислот рассмотрены в главе "Матричный биосинтез".


Дата добавления: 2015-12-16 | Просмотры: 4226 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.009 сек.)