МЕТОДЫ ИЗУЧЕНИЯ ДНК
1. Для выделения ДНК из гомогената тканей удаляют фрагменты клеточных органелл и мембран с помощью центрифугирования. Белки, разрушенные протеазами (чаще всего применяют протеиназу К), экстрагируют из раствора. Затем ДНК осаждают, например, этанолом и после удаления надосадочной жидкости ДНК растворяют в буферном растворе.
2. Молекула ДНК среднего размера содержит 150 000 000 нуклеотидных пар и имеет длину 4 см. Поэтому молекулы ДНК чувствительны к сдвиговым усилиям, возникающим в растворе, и в процессе выделения ДНК из тканей она фрагменти-руется. Получаются молекулы ДНК значительно меньше исходных, но все равно очень большие — тысячи или десятки тысяч пар нуклеотидов. Такие молекулы неудобны для исследований, и их приходится дополнительно фрагментировать.
Для фрагментирования используют рестриктазы — ферменты, выделяемые из бактерий. У бактерий эти ферменты участвуют в уничтожении чужеродных для них ДНК. Рестриктазы «узнают» специфические последовательности из 4—6 нуклеотидов (сайты рестрикции), которые встречаются в ДНК человека. Известно множество различных рестриктаз, причем каждая из них «узнает» свой сайт рестрикции (рис. 3.3).
С помощью набора рестриктаз можно разрезать молекулу ДНК на фрагменты желаемой длины. Например, для изучения первичной структуры удобны фрагменты размером около 300 нуклеотидных парн.п. Следовательно, цельную молекулу ДНК в 150 000 000 н.п. нужно разрезать на 500 000 фрагментов и каждый из фрагментов изучать отдельно.
Полимеразная цепная реакция (ПЦР). Для проведения некоторых исследований необходимо большое количество хорошо очищенной высокомолекулярной ДНК. Метод ПЦР дает возможностьизбирательно синтезировать in vitro небольшие участки ДНК и получить за 3—4 ч несколько миллионов копий исследуемого фрагмента. Объектами для выделения ДНК могут быть кровь, биоптат ткани, слюна, моча, околоплодные воды и т.д. Подробно этот метод и его применение в ДНК-диагностике будут рассмотрены в теме 3.10.
Гибридизация. Для изучения видовой специфичности нуклеиновых кислот применяют метод гибридизации. Он основан на способности ДНК к денатурации при нагревании (80—90 °С) и ренативации при последующем охлаждении. Возможно использование метода для проведения гибридизации ДНК-ДНК и ДНК-РНК. Методом гибридизации можно установить сходство и различия первичной структуры разных образцов нуклеиновых кислот.
Вопрс№5
Генети́ческий код - это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
В ДНК используется четыре нуклеотида — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.
Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален для почти всех живых организмов.
Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на матрице иРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.
Дата добавления: 2015-12-16 | Просмотры: 1403 | Нарушение авторских прав
|