АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Функции спинного мозга. 10 страница

Прочитайте:
  1. A) поражение нервных стволов сплетений Б) поражение задних корешков спинного мозга
  2. A. дисфагия 1 страница
  3. A. дисфагия 1 страница
  4. A. дисфагия 2 страница
  5. A. дисфагия 2 страница
  6. A. дисфагия 3 страница
  7. A. дисфагия 3 страница
  8. A. дисфагия 4 страница
  9. A. дисфагия 4 страница
  10. A. дисфагия 5 страница

Гуморальная регуляция дыхания.

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение – гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыхания увеличивается. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются, и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.

Дыхание при пониженном атмосферном давлении. Гипоксия.

Атмосферное давление понижается при подъеме на высоту. Это сопровождается одновременным снижением парциального давления кислорода в альвеолярном воздухе. На уровне моря оно составляет 105 мм рт ст. На высоте 4000 м уже в 2 раза меньше. В результате уменьшается напряжение кислорода в крови. Возникает гипоксия. При быстром падении атмосферного давления наблюдается острая гипоксия. Она сопровождается эйфорией, чувством ложного благополучия, и скоротечной потерей сознания. При медленном подъеме гипоксия нарастает медленно. Развиваются симптомы горной болезни. Первоначально появляется слабость, учащение и углубление дыхания, головная боль. Затем начинается тошнота, рвота, резко усиливаются слабость и одышка. В итоге тоже наступает потеря сознания, отек мозга и смерть. До высоты 3 км у большинства людей симптомов горной болезни не бывает. На высоте 5 км наблюдаются изменения дыхания, кровообращения, вышей нервной деятельности. На высоте 7 км эти явления резко усиливаются. Высота 8 км является предельной для жизнедеятельности.

На высоте организм страдает не только от гипоксии, но и от гипокапнии. В результате снижения напряжения кислорода в крови возбуждаются хеморецепторы сосудов. Дыхание учащается и углубляется. Из крови выводится углекислый газ и его напряжение падает ниже нормы. Это приводит у угнетению дыхательного центра. Несмотря на гипоксию, дыхание становится редким и поверхностным. В процессе адаптации к хронической гипоксии выделяют три стадии. На первой, аварийной, компенсация достигается за счет увеличения легочной вентиляции, усиления кровообращения, повышения кислородной емкости крови и т.д. На стадии относительной стабилизации происходят такие изменения, систем организма, которые обеспечивают более высокий и выгодный уровень адаптации. В стабильной стадии физиологические показатели организма становятся устойчивыми за счет ряда компенсаторных механизмов. Так кислородная емкость крови увеличивается не только за счет возрастания количества эритроцитов, но и 2,3-фосфоглицерата в них. За счет 2,3-фосфоглицерата улучшается диссоциация оксигемоглобина в тканях. Появляется фетальный гемоглобин, имеющий более высокую способность связывать кислород. Одновременно повышается диффузионная способность легких и возникает «функциональная эмфизема», т.е. в дыхание включаются резервные альвеолы, и увеличивается функциональная остаточная емкость. Энергетический обмен понижается, но повышается интенсивность обмена углеводов.

Гипоксия – это недостаточное снабжение тканей кислородом. Формы гипоксии:

1. Гипоксемическая гипоксия. Возникает при снижении напряжения кислорода в крови (уменьшение атмосферного давления, диффузионной способности легких и т.д.).

2. Анемическая гипоксия. Является следствием понижения способности крови транспортировать кислород (анемии, угарное отравление).

3. Циркуляторная гипоксия. Наблюдается при нарушении системного и местного кровотока (болезни сердца и сосудов).

4. Гистотоксическая гипоксия. Возникает при нарушении тканевого дыхания (отравление цианидами).

Дыхание при повышении атмосферного давления. Кессонная болезнь.

Дыхание при повышенном атмосферном давлении имеет место во время водолазных и кессонных (колокол-кессон) работ. В этих условиях дыхание урежается до 2-4 раз в минуту. Вдох укорачивается, а выдох удлиняется и затрудняется. Газообмен в легких немного ускоряется. При обычном атмосферном давлении в плазме крови находится в растворенном состоянии около 1% азота. Чем выше атмосферное давление, тем выше его растворимость, тем больше его накапливается в крови. Увеличивается количество растворенного азота и по мере удлинения времени подводных работ. При быстром снижении давления, например, экстренном подъеме водолаза, растворимость азота резко падает. Он переходит в газообразную форму и образует в сосудах пузырьки – эмболы. Они закупоривают просвет мелких сосудов. Возникает газовая эмболия, и кровоснабжение тканей нарушается. Развивается кессонная болезнь, сопровождающаяся сильными болями в суставах, костях, мышцах, головной болью («залом»). Появляется рвота, паралич, пострадавший теряет сознание. Для ее лечения пострадавшего помещают в декомпрессионную камеру, где давление вновь поднимается до полного растворения азота. Затем очень медленно снижают его, чтобы азот успевал выходить через легкие. Профилактика этого состояния проводится путем использования ступенчатой декомпрессии, т.е. когда водолаз поднимается на поверхность, то через каждые 10 м подъема делает остановку на строго определенное время. Для дыхания на глубине применяют также газовую смесь, в которой азот замещается на гелий. Он практически не растворяется в плазме крови. Кроме того, азот на глубине больше 70 м, а кислород 90 м приобретает наркотические свойства. Поэтому в гелиевой смеси всего 5% кислорода.

Гиперболическая оксигенация.

Для лечения заболеваний сосудов, сердечной недостаточности и др., сопровождающихся гипоксией, используется кислород. Если дается чистый кислород при обычном атмосферном давлении, эта процедура называется изобарической оксигенацией (кислородная подушка). Если используется барокамера, в которой давление поднимается выше атмосферного, то этот метод называется гиперболической оксигенацией. Данные методы служат для увеличения напряжения кислорода в крови. При анемической гипоксии эта терапия бесполезна. При гипоксемической и циркуляторной положительно влияет на состояние больного. Изобарическую, а тем более гиперболическую оксигенацию можно использовать лишь в течение непродолжительного времени. Длительное использование кислорода сопровождается кислородным отравлением. При нормальном атмосферном давлении дышать кислородом можно не более 4 часов. Это связано с тем, что при длительном действии кислорода в клетках возникает гипероксия или кислородное отравление. Она сопровождается угнетением окисления углеводов. Кислородное отравление проявляется снижением почечного и мозгового кровотока, снижением систолического объема. Это приводит к потере сознания и судорогам. Одновременно повреждается легочная ткань, а как следствие нарушается диффузионная способность легких. Уменьшается количество сурфактанта в альвеолах, возникает отек легких. У новорожденных детей повреждаются клетки сетчатки. Поэтому при длительной оксигенации применяется не чистый кислород, а газовая смесь.

ФИЗИОЛОГИЯ ПИЩЕВАРЕНИЯ.

Значение пищеварения и его виды. Функции пищеварительного тракта.

Для существования организма необходимо постоянное восполнение энергетических затрат и поступление пластического материала, служащего для обновления клеток. Для этого требуется поступление из внешней среды белков, жиров, углеводов, минеральных веществ, микроэлементов, витаминов и воды. Существуют следующие разновидности пищеварения:

1. Аутолитическое. Осуществляется ферментами, находящимися в самих пищевых продуктах.

2. Симбионтное. Происходит с помощью симбионтных организмов (микрофлора кишечника человека расщепляет около 5% клетчатки до глюкозы, у жвачных животных 70-80%).

3. Собственное. Осуществляется специализированными органами пищеварения.

a. Полостное – ферментами, находящимися в полости пищеварительного канала.

b. Мембранное или пристеночное – ферментами, адсорбированными на мембранах клеток пищеварительного канала.

c. Клеточное – ферментами клеток.

Собственное пищеварение – это процесс физико-химической переработки пищи специализированными органами, в результате, которого она превращается в вещества, способные всасываться в пищеварительном канале и усваиваться клетками организма.

Органы пищеварения выполняют следующие функции:

1. Секреторная. Она заключается в выработке пищеварительных соков, необходимых для гидролиза компонентов пищи.

2. Моторная и двигательная. Обеспечивает механическую переработку пищи, ее перемещение по пищеварительному каналу и выведение не переваренных продуктов.

3. Всасывательная. Служит для всасывания из желудочно-кишечного тракта продуктов гидролиза.

4. Экскреторная. Благодаря ей через желудочно-кишечный тракт выводятся не переваренные остатки и продукты обмена веществ.

5. Гормональная. В желудочно-кишечном тракте имеются клетки, которые вырабатывают местные гормоны. Они участвуют в регуляции пищеварения и других физиологических процессов.

Пищеварение в полости рта. Состав и физиологическое значение слюны.

Обработка пищевых веществ начинается в ротовой полости. У человека пища в ней находится 15-20 сек. Здесь она измельчается, смачивается слюной и превращается в пищевой комок. В ротовой полости происходит всасывание некоторых веществ. Например, всасывается небольшое количество глюкозы и алкоголя. В нее открываются протоки 3 пар крупных слюнных желез: околоушная, подчелюстная и подъязычная. Кроме того, имеется большое количество мелких желез в слизистой языка, щек и неба. В течение суток вырабатывается около 1,5 литров слюны. pH слюны 5,8-8,0. Осмотическое давление слюны ниже, чем крови. Слюна содержит 99% воды и 1% сухого остатка. В состав сухого остатка входят:

1. Минеральные вещества. Катионы калия, натрия, кальция, магния. Анионы хлора, родоната (SCN-), гидрокарбонат, фосфат анионы.

2. Простые органические вещества. Мочевина, креатинин, глюкоза.

3. Ферменты: α-амилаза, мальтаза, калликреин, лизоцим (мурамидаза), небольшое количество нуклеаз.

4. Белки. Иммуноглобулины А, немного белков плазмы крови.

5. Муцин, мукополисахарид, придающий слюне слизистые свойства.

Функции слюны:

1. Она играет защитную роль. Слюна смачивает слизистую рта, а муцин препятствует ее механическому раздражению. Лизоцим и родонат обладают антибактериальным действием. Защитную функцию обеспечивают также иммуноглобулины А и нуклеазы слюны. Со слюной из ротовой полости удаляются отвергаемые вещества. При их попадании в рот выделяется большое количество жидкой слюны.

2. Слюна смачивает пищу и растворяет ее некоторые компоненты.

3. Она способствует склеиванию пищевых частиц, формированию пищевого комка и его проглатыванию (опыт с глотанием).

4. Слюна содержит пищеварительные ферменты, осуществляющие начальный гидролиз углеводов, α-амилаза расщепляет крахмал до декстринов. Она активна только в щелочной и нейтральной среде. Мальтаза гидролизует дисахариды мальтозу и сахарозу до глюкозы.

5. Без растворения слюной сухих пищевых веществ невозможно восприятие вкуса.

6. Слюна обеспечивает минерализацию зубов, т.к. содержит фосфор и кальций, т.е. выполняет трофическую функцию.

7. Экскреторная. Со слюной выделяется небольшое количество продуктов белкового обмена – мочевина, мочевая кислота, креатинин, а также соли тяжелых металлов.

Механизм образования слюны и регуляции слюноотделения.

В железистых клетках ацинусов слюнных желез находятся секреторные гранулы. Они осуществляют синтез ферментов и муцина. Образующийся первичный секрет выходит из клеток в протоки. Там он разбавляется водой и насыщается минеральными веществами. Околоушные железы в основном образованы серозными клетками и вырабатывают жидкий серозный секрет, а подъязычные слизистыми, которые выделяют слюну богатую муцином. Подчелюстные вырабатывают смешанную серозно-слизистую слюну.

Регуляция слюноотделения преимущественно осуществляется нервными механизмами. Вне пищеварения в основном функционируют мелкие железы. В пищеварительный период секреция слюны значительно возрастает. Регуляция пищеварительной секреции осуществляется условно- и безусловно-рефлекторными механизмами. Безусловно-рефлекторное слюноотделение возникает при раздражении первоначально тактильных, а затем температурных и вкусовых рецепторов полости рта. Но основную роль играют вкусовые. Нервные импульсы от них по афферентным нервным волокнам язычного, языкоглоточного и верхнегортанного нервов поступают в слюноотделительный центр продолговатого мозга. Он находится в области ядер лицевого и языкоглоточного нервов. От центра импульсы по эфферентным нервам идут к слюнным железам. К околоушной железе эфферентные парасимпатические волокна идут от нижнего слюноотделительного ядра в составе нерва Якобсона, а затем ушно-височных нервов. Парасимпатические нервы, иннервирующие серозные клетки подчелюстных и подъязычных желез начинаются от верхнего слюноотделительного ядра, идут в составе лицевого нерва, а затем барабанной струны. Симпатические нервы, иннервирующие железы идут от слюноотделительных ядер II-VI грудных сегментов, прерываются в шейном ганглии, а затем их постганглионарные волокна идут к слизистым клеткам. Поэтому раздражение парасимпатических нервов ведет к выделению большого количества жидкой слюны, а симпатических – небольшого объема слизистой. Условно-рефлекторное слюноотделение начинается раньше безусловно-рефлекторного. Оно возникает на запах, вид пищи, звуки предшествующие кормлению. Условно-рефлекторные механизмы секреции обеспечиваются корой больших полушарий, которая через нисходящие пути стимулирует центр слюноотделения.

Небольшой вклад в регуляцию слюноотделения вносят гуморальные факторы. В частности его стимулируют ацетилхолин и гистамин, а тормозит тироксин. Калликреин, вырабатываемый слюнными железами, стимулирует образование из кининогенов плазмы брадикинина. Он расширяет сосуды желез и усиливает секрецию слюны.

Слюноотделения в эксперименте исследуется путем наложения фистулы слюнного протока, т.е. его выведения на кожу щеки. В клинике чистую слюну собирают с помощью капсулы Лэппги-Красногорского, которая прикрепляется в выходу выводного протока железы. Проводимость протоков желез используют с помощью сиалографии. Это рентгенологическое исследование протоков заполненных контрастным веществом ндолиполом. Выделительная функция желез изучается посредством радиосиалографии. Это регистрация выделения железами радиоактивного йода.

Жевание.

Жевание служит для механической переработки пищи, т.е. ее откусывания, дробления и перетирания. При жевании пища смачивается слюной, и из нее формируется пищевой комок. Жевание происходит благодаря сложной координации сокращений мышц, обеспечивающих движения зубов, языка, щек и дна полости рта. Жевание исследуется с помощью электромиографии жевательных мышц и мастикациографии. Это запись жевательных движений. На мастикациограмме можно выделить 5 фаз жевательного периода:

1. Фаза покоя.

2. Введения пищи в рот.

3. Первоначального дробления.

4. Основная фаза жевания

5. Формирования пищевого комка и проглатывания.

Общая продолжительность жевательного периода 15-30 сек.

Силу жевательных мышц исследуют с помощью гнатодинамометрии, их тонусмиотонометрии, эффективность жевания – жевательных проб.

Жевание сложнорефлекторный акт, т.е. он осуществляется безусловно- и условно-рефлекторными механизмами. Безусловно-рефлекторный состоит в том, что пищей раздражаются механорецепторы периодонта зубов и слизистой рта. От них импульсы по афферентным волокнам тройничного, языкоглоточного и верхнегортанного нервов поступают в центр жевания продолговатого мозга. По эфферентным волокнам тройничного, лицевого и подъязычного нервов импульсы идут к жевательным мышцам, осуществляя бессознательные согласованные сокращения. Условно-рефлекторные влияния позволяют произвольно регулировать жевательный акт.

Глотание.

Глотание сложнорефлекторный акт, который начинается произвольно. Сформированный пищевой комок перемещается на спинку языка, языком прижимается к твердому небу и передвигается на корень языка. Здесь он раздражает механорецепторы корня языка и небных дужек. От них по афферентным нервам импульсы идут к центру глотания продолговатого мозга. От него, по эфферентным волокнам подъязычного, тройничного, языкоглоточного и блуждающего нервов, они поступают к мышцам полости рта, глотки, гортани, пищевода. Мягкое небо рефлекторно поднимается и закрывает вход в носоглотку. Одновременно гортань поднимается, а надгортанник опускается, закрывая вход в гортань. Пищевой комок проталкивается в расширившуюся глотку. Этим заканчивается ротоглоточная фаза глотания. Затем подтягивается пищевод и его верхний сфинктер расслабляется. Начинается пищеводная фаза. По пищеводу пищевой комок продвигается за счет его перистальтики. Циркулярные мышцы пищевода сокращаются выше пищевого комка и расслабляются ниже его. Волна сокращения-расслабления распространяется к желудку. Этот процесс называется первичной перистальтикой. При подходе пищевого комка к желудку расслабляется нижний пищеводный или кардиальный сфинктер, пропуская комок в желудок. Вне глотания он закрыт и служит для предотвращения заброса в пищевод желудочного содержимого. Если пищевой комок застревает в пищеводе, то от места его расположения начинается вторичная перистальтика, по механизмам идентичная первичной. Твердая пища продвигается по пищеводу 8-9 сек. Жидкая стекает пассивно, без перистальтики, за 1-2 сек. Расстройства глотания называются дисфагиями. Они возникают при нарушениях в центре глотания (водобоязнь), иннервации пищевода или спазмах мышц. Снижение тонуса кардиального сфинктера приводит к рефлексу, т.е. забросу желудочного содержимого в пищевод (изжога). Если его тонус наоборот повышен, пища скапливается в пищеводе. Это явление называется ахалазией.

В клинике глотание исследуется рентгеноскопически, путем проглатывания взвеси сульфата бария (рентгеноконтрастное вещество).

Пищеварение в желудке.

Желудок выполняет следующие функции:

1. Депонирующая. Пища находится в желудке несколько часов.

2. Секреторная. Клетки его слизистой вырабатывают желудочный сок.

3. Моторная. Он обеспечивает перемешивание и перемещение пищевых масс в кишечник.

4. Всасывательная. В нем всасывается небольшое количество воды, глюкозы, аминокислот, спиртов.

5. Экскреторная. С желудочным соком в пищеварительный канал выводятся некоторые продукты обмена (мочевина, креатинин и соли тяжелых металлов).

6. Инкреторная или гормональная. В слизистой желудка имеются клетки, вырабатывающие желудочно-кишечные гормоны – гастрин, гистамин, мотилин.

7. Защитная. Желудок является барьером для патогенной микрофлоры, а также вредных пищевых веществ (рвота).

Состав и свойства желудочного сока. Значение его компонентов.

В сутки образуется 1,5-2,5 литров сока. Вне пищеварения выделяется всего 10-15 мл сока в час. Такой сок обладает нейтральной реакцией и состоит из воды, муцина и электролитов. При приеме пищи количество образующегося сока возрастает 500-1200 мл. Вырабатываемый при этом сок представляет собой бесцветную прозрачную жидкость сильнокислой реакции, так как в нем находится 0,5% соляной кислоты. pH пищеварительного сока 0,9-2,5. Он содержит 98,5% воды и 1,5% сухого остатка. Их них 1,1% неорганические вещества, а 0,4% органические. Неорганическая часть сухого остатка содержит катионы калия, натрия, магния и анионы хлора, фосфорной и серной кислот. Органические вещества представлены мочевиной, креатинином, мочевой кислотой, ферментами и слизью.

Ферменты желудочного сока включают пептидазы, липазу, лизоцим. К пептидазам относятся пепсины. Это комплекс нескольких ферментов, расщепляющих белки. Пепсины гидролизуют пептидные связи в молекуле белков с образованием продуктов их неполного расщепления – пептонов и полипептидоз. Пепсины синтезируются главными клетками слизистой в неактивной форме, в виде пепсиногенов. Соляная кислота сока отщепляет от них белок ингибирующий их активность. Они становятся активными ферментами. Пепсин А активен при pH=1,2-2,0. Пепсин С, гастриксин при pH=3,0-3,5. Эти два фермента расщепляют короткоцепочные белки. Пепсин В, парапепсин активен при pH=3,0-3,5. Он расщепляет белки соединительной ткани. Пепсин D, гидролизует белок молока – казеин. Пепсины А, В, и D в основном синтезируются в антральном отделе. Гастриксин образуется во всех отделах желудка. Переваривание белков наиболее активно идет в примукозальном слое слизи, так как там сосредоточены ферменты и соляная кислота. Желудочная липаза расщепляет эмульгированные жиры молока. У взрослого ее значение не велико. У детей она гидролизует до 50% молочного жира. Лизоцим уничтожает микроорганизмы, попавшие в желудок.

Соляная кислота образуется в обкладочных клетках за счет следующих процессов.

1. Перехода гидрокарбоната анионов в кровь в обмен на катионы водорода. Процесс образования гидрокарбонат анионов в обкладочных клетках происходит при участии карбоангидразы. В результате такого обмена на высоте секреции возникает алкалоз.

2. Вследствие активного транспорта протонов в эти клетки.

3. C помощью активного транспорта анионов хлора в них.

Соляная кислота растворенная в желудочном соке называется свободной. Находящаяся в соединении с белками определяет связанную кислотность сока. Все кислые продукты сока обеспечивают его общую кислотность.

Значение соляной кислоты сока:

1. Активирует пепсиноген.

2. Создает оптимальную реакцию среды для действия пепсинов.

3. Вызывает денатурацию и разрыхление белков, обеспечивая доступ пепсинов к белковым молекулам.

4. Способствует створаживанию молока, т.е. образованию из растворенного казеиногена, нерастворимого казеина.

5. Обладает антибактериальным действием.

6. Стимулирует моторику желудка и секрецию желудочных желез.

7. Способствует выработке в двенадцатиперстной кишке желудочно-кишечных гормонов.

Слизь вырабатывается добавочными клетками. Муцин образует оболочку плотно прилегающую к слизистой. Таким образом он защищает ее клетки от механических повреждений и переваривающего действия сока. В слизи накапливаются некоторые витамины (группы В и С), а также содержится внутренний фактор Кастла. Этот гастромукопротид необходим для всасывания витамина В12, обеспечивающего нормальный эритропоэз.

Пища, поступающая из ротовой полости, располагается в желудке слоями и не перемешивается в течение 1-2 часов. Поэтому во внутренних слоях продолжается переваривание углеводов под действием ферментов слюны.

Регуляция желудочной секреции.

Пищеварительная секреция регулируется посредством нейрогуморальных механизмов. В ней выделяют три фазы: сложнорефлекторную, желудочную и кишечную. Сложнорефлекторная делится на условно-рефлекторный и безусловно-рефлекторный периоды. Условно-рефлекторный начинается с того момента, когда запах, вид пищи, звуки предшествующие кормлению вызывают возбуждение обонятельной, зрительной и слуховой сенсорных систем. В результате вырабатывается так называемый запальный желудочный сок. Он обладает высокой кислотностью и большой протеолитической активностью. После того, как пища попадает в ротовую полость, начинается безусловно-рефлекторный период. Она раздражает тактильные, температурные и вкусовые рецепторы полости рта, глотки и пищевода. Нервные импульсы от них поступают в центр регуляции желудочной секреции продолговатого мозга. От него импульсы по эфферентным волокнам вагуса идут к желудочным железам, стимулируя их активность. Таким образом в первой фазе регуляцию секреции осуществляют бульбарный центр секреции, гипоталамус, лимбическая система и кора больших полушарий.

Желудочная фаза секреции начинается с момента поступления пищевого комка в желудок. В основном ее регуляция обеспечивается нейрогуморальными механизмами. Поступивший в желудок пищевой комок, а также выделившийся запальный сок, раздражают рецепторы слизистой желудка. Нервные импульсы от них идут в бульбарный центр желудочной секреции, а от него по вагусу к железистым клеткам, поддерживая секрецию. Одновременно импульсы поступают к G-клеткам слизистой, которые начинают вырабатывать гормон гастрин. В основном G-клетки сосредоточены в анальном отделе желудка. Гастрин наиболее сильный стимулятор секреции соляной кислоты. Секреторную активность главных клеток он стимулирует слабее. Кроме того, ацетилхолин, выделяющийся из окончаний вагуса, вызывает образование гистамина тучными клетками слизистой. Гистамин действует на Н3-рецепторы обкладочных клеток, усиливая выделение ими соляной кислоты. Гистамин играет главную роль в усилении выработки соляной кислоты. В определенной степени участвуют в регуляции секреции и интрамуральные ганглии желудка, также стимулирующие секрецию.

Заключительная кишечная фаза начинается при переходе кислого химуса в двенадцатиперстную кишку. Количество сока выделяющееся в течение нее небольшое. Роль нервных механизмов в регуляции желудочной секреции в этот момент незначительна. Первоначально, раздражение механо- и хеморецепторов кишки, выделение ее G-клетками гастрина, стимулирует секрецию сока желудочными железами. Особенно усиливают выделение гастрина продукты гидролиза белков. Однако затем клетки слизистой кишки начинают вырабатывать гормон секретин, который является антагонистом гастрина и тормозит желудочную секрецию. Кроме того, под влиянием жиров в кишке начинают вырабатываться такие гормоны, как желудочный ингибирующий пептид (GIP) и холецистокинин-панкреозимин. Они также угнетают ее.

На желудочную секрецию влияет состав пищи. Впервые это явление было исследовано в лаборатории И. П. Павлова. Установлено, что наиболее сильными возбудителями секреции являются белки. Они вызывают выделение сока сильнокислой реакции и большой переваривающей силы. В них содержится много экстрактных веществ (гистамин, аминокислоты и т.д.). Наиболее слабыми возбудителями секреции являются жиры. В них нет экстрактивных веществ и они стимулируют выработку в двенадцатиперстной кишке GIP и холецистокинин-панкреозимина. Эти эффекты пищевых веществ используются в диетотерапии.

Нарушение секреции проявляется гастритами. Различают гастриты с повышенной, сохраненной и пониженной секрецией. Они обусловлены нарушениями нейрогуморальных механизмов регуляции секреции или поражением железистых клеток желудка. При чрезмерной выработке гастрина G-клетками возникает болезнь Золлингера-Эллисона. Она проявляется гиперсекреторной активностью обкладочных клеток желудка, а также появлением язв слизистой.

Моторная и эвакуаторная функции желудка.

В стенке желудка имеются гладкомышечные волокна, расположенные в продольном, циркулярном и косом направлениях. В области привратника циркулярные мышцы формируют пилорический сфинктер. В период поступления пищи стенка желудка расслабляется и давление а нем падает. Это состояние называется рецептивным расслаблением. Оно способствует накоплению пищи. Моторная активность желудка проявляется движениями трех типов:

1. Перистальтические сокращения. Они начинаются в верхних отделах желудка. Там находятся клетки водители ритма (пейсмекеры). Отсюда эти круговые сокращения распространяются к пилорическому отделу. Перистальтика обеспечивает перемешивание и продвижение химуса к пилорическому сфинктеру.

2. Тонические сокращения. Редкие однофазные сокращения участков желудка. Способствуют перемешиванию пищевых масс.

3. Пропульсивные сокращения. Это сильные сокращения антрального и пилорического отделов. Они обеспечивают переход химуса в двенадцатиперстную кишку. Скорость перехода пищевых масс в кишечник зависит от их консистенции и состава. Плохо измельченная пища дольше задерживается в желудке. Жидкая переходит быстрее. Жирная пища тормозит этот процесс, а белковая ускоряет.

Регуляция моторной функции желудка осуществляется миогенными механизмами, экстрамуральными парасимпатическими и симпатическими нервами, интрамуральными сплетениями и гуморальными факторами. Гладкомышечные клетки водители ритма желудка сконцентрированы в кардиальной части. Они находятся под контролем экстрамуральных нервов и интрамуральных сплетений. Основную роль играет вагус. При раздражении механорецепторов желудка импульсы от них поступают к центрам вагуса, а от них к гладким мышцам желудка, вызывая их сокращения. Кроме того, импульсы от механорецепторов идут к нейронам интрамуральных нервных сплетений, а от них к гладкомышечным клеткам. Симпатические нервы оказывают слабое тормозящее влияние на моторику желудка. Гастрин и гистамин учащают и усиливают движение желудка. Тормозит их секрецию и желудочный ингибирующий пептид.


Дата добавления: 2015-05-19 | Просмотры: 729 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.014 сек.)