Функции спинного мозга. 13 страница
Регуляция мочеобразования.
Почки имеют высокую способность к саморегуляции. Чем ниже осмотическое давление крови, тем выражение процессы фильтрации и слабее реабсорбция и наоборот. Нервная регуляция осуществляется посредством симпатических нервов иннервирующих почечные артериолы. При их возбуждении суживаются выносящие артериолы, кровяное давление в капиллярах клубочков, а как следствие, эффективное фильтрационное давление, растут, клубочковая фильтрация ускоряется. Также симпатические нервы усиливают реабсорбцию глюкозы, натрия и воды. Гуморальная регуляция осуществляется группой факторов.
1. Антидиуретический гормон. Он начинает выделяться из задней доли гипофиза при повышении осмотического давления крови и возбуждения осморецепторных нейронов гипоталамуса. Антидиуретический гормон взаимодействует с рецепторами эпителия собирательных трубочек, которые повышают содержание циклического аденозинмонофосфата в них. Циклический аденозинмонофосфат активирует протеинкиназы, которые увеличивают проницаемость эпителия дистальных канальцев и собирательных трубочек для воды. В результате реабсорбция воды возрастает, и она сохраняется в сосудистом русле.
2. Альдостерон. Стимулирует активность натрий-калиевой АТФ-азы, поэтому увеличивает реабсорбцию натрия, но одновременно выведения калия и протонов в канальцах. В результате возрастает содержание калия и протонов в моче. При недостатке альдостерона организм теряет натрий и воду.
3. Натрийуретический гормон или атриопептид. Образуется в основном в левом предсердии при его растяжении, а также в передней доле гипофиза и хромаффинных клеток надпочечников. Он усиливает фильтрацию, снижает реабсорбцию натрия. В результате возрастает выведение натрия и хлора почками, повышает суточный диурез.
4. Паратгормон и кальцитонин. Паратгормон усиливает реабсорбцию кальция, магния и снижает обратное всасывание фосфата. Кальцитонин уменьшает реабсорбцию этих ионов.
5. Ренин-ангиотензин-альдостероновая система. Ренин это протеаза, которая вырабатывается юкстагломерулярными клетками артериол почек. Под влиянием ренина от белка плазмы крови α2- глобулина – ангиотензина отщепляется ангиотензин I. Затем ангиотензин I превращается ренином в ангиотензин II. Это самое сильное сосудосуживающее вещество. Образование и выделение ренина почками вызывают следующие факторы:
Ø Понижение артериального давления.
Ø Снижение объема циркулирующей крови.
Ø При возбуждении симпатических нервов, иннервирующих сосуды почек.
Под влиянием ренина суживаются артериолы почек, и уменьшается проницаемость стенки капилляров клубочка. В результате скорость фильтрации снижается. Одновременно ангиотензин II стимулирует выделение альдостерона надпочечниками. Альдостерон усиливает канальцевую реабсорбцию натрия и реабсорбцию воды. Происходит задержка воды и натрия в организме. Действие ангиотензина сопровождается усилением синтеза антидиуретического гормона гипофиза. Увеличение воды и хлорида натрия в сосудистом русле, при прежнем содержании белков плазмы, приводит к выходу воды в ткани. Развиваются почечные отеки. Это происходит на фоне повышения артериального давления.
6. Калликреин-кининовая система. Является антагонистом ренин-ангиотензиновой. При снижении почечного кровотока в эпителии дистальных канальцев начинает вырабатываться фермент калликреин. Он переводит неактивные белки плазмы кининогены в активные кинины. В частности брадикинин. Кинины расширяют почечные сосуды, увеличивают скорость клубочковой ультрафильтрации и уменьшают интенсивность процессов реабсорбции. Диурез возрастает.
7. Простагландины. Они синтезируются в мозговом веществе почек простагландинсинтетазами и стимулируют выведение натрия и воды. Нарушения экскреторной функции почек возникают при острой или хронической почечной недостаточности. В крови накапливаются азотсодержащие продукты обмена – мочевая кислота, мочевина, креатинин. Повышается содержание в ней калия и снижается натрия. Возникает ацидоз. Это происходит на фоне повышения артериального давления, отеков и снижения чуточного диуреза. Конечным итогом почечной недостаточности является уремия. Одним из ее проявлений является прекращение мочеобразования – анурия.
Невыделительные функции почек.
1. Регуляция постоянства ионного состава и объема межклеточной жидкости организма. Базисным механизмом регуляции объема крови и межклеточной жидкости является изменение содержания натрия. При увеличении его количества в крови увеличивается прием воды и происходит ее задержка в организме, т.е. наблюдается положительный натриевый и водный баланс. В этом случае изотоничность жидких сред организма сохраняется. При низком содержании хлорида натрия в рационе выведение натрия из организма преобладает, т.е. имеет место отрицательный натриевый баланс. Но благодаря почкам устанавливается и отрицательный водный баланс и выведение воды начинает превышать ее потребление. В этих случаях через 2-3 недели устанавливается новый натрий-водный баланс. Но выведение натрия и воды почками будет или больше или меньше исходного. При увеличении объема циркулирующей крови (ОЦК) или гиперволемии повышается артериальное и эффективное фильтрационное давление. Одновременно в предсердиях начинает выделяться натрийуретический гормон. В результате выведения натрия и воды почками возрастает. При снижении объема циркулирующей крови или гиповолемии артериальное давление падает. Уменьшается эффективное фильтрационное давление и включается ряд дополнительных механизмов, обеспечивающих сохранение натрия и воды в организме. В сосудах печени, почек, сердца и каротидных синусах имеются периферические осморецепторы, а в гипоталамусе осморецепторные нейроны. Они реагируют на изменение осмотического давления крови. Импульсы от них идут в центр осморегуляции, находящийся в области супраоптического и паравентрикулярного ядер. Активируется симпатическая нервная система. Сосуды, в том числе и почек, суживаются. Одновременно начинается образование и выделение гипофизом антидиуретического гормона. Выделяющиеся надпочечниками адреналин и норадреналин также суживают приносящие артериолы. В результате фильтрация в почках уменьшается, а реабсорбция усиливается. Одновременно активируется ренин-ангиотензиновая система. В этот же период развивается чувство жажды. Соотношение содержания ионов натрия и калия регулируется минералокортикоидами, кальция и фосфора паратгормоном и кальцитонином.
2. Участие в регуляции системного артериального давления. Они осуществляют эту функцию посредством поддержания постоянства объема циркулирующей крови, а также ренин-ангиотензиновой и калликреин-кининовой систем.
3. Поддержание кислотно-щелочного равновесия. При сдвиге реакции крови в кислую сторону, в канальцах выводятся анионы кислот и протоны, но одновременно реабсорбируются ионы натрия и гидрокарбонат анионы. При алкалозе выводятся катионы щелочей и гидрокарбонат анионы.
4. Регуляция кроветворения. В них вырабатываются эритропоэтин. Это кислый гликопротеин, состоящий из белка и гетеросахарида. Выработку эритропоэтина стимулирует низкое напряжение кислорода в крови.
Мочевыведение.
Моча постоянно вырабатывается в почках и по собирательным трубочкам поступает в лоханки, а затем по мочеточникам в мочевой пузырь. Скорость наполнения пузыря около 50 мл/час. В это время, называемое периодом наполнения, мочеиспускание или затруднено или невозможно. Когда в пузыре накапливается 200-300 мл мочи, возникает рефлекс мочеиспускания. В стенке пузыря имеются рецепторы растяжения. Они возбуждаются, и импульсы от них по афферентным волокнам тазовых парасимпатических нервов поступают в центр мочеиспускания. Он расположен во 2-4 крестцовых сегментах спинного мозга. От центра мочеиспускания импульсы поступают в таламус, а затем в кору. Возникают позывы на мочеиспускание, и начинается период опорожнения пузыря. От центра мочеиспускания, по эфферентным парасимпатическим тазовым нервам, начинают поступать импульсы к гладким мышцам стенки пузыря. Они сокращаются, и давление в пузыре растет. В основании пузыря эти мышцы образуют внутренний сфинктер. Благодаря особому направлению гладкомышечных волокон в нем, их сокращение приводит к пассивному раскрытию сфинктера. Одновременно открывается наружный мочеиспускательный сфинктер, образованный поперечнополосатыми мышцами промежности. Они иннервируются ветвями срамного нерва. Пузырь опорожняется. С помощью коры регулируется начало и течение процесса мочеиспускания. В то же время может наблюдаться психогенное недержание мочи. При накоплении в пузыре более 500 мл мочи может возникать защитная реакция – непроизвольное мочеиспускание. Нарушения – циститы, задержка мочи.
ФИЗИОЛОГИЯ АНАЛИЗАТОРОВ.
Общая физиология анализаторов.
Анализатором, или сенсорной системой, называют честь нервной системы, состоящую из множества специализированных воспринимающих приборов – рецепторов, а также промежуточных и центральных нервных клеток и связывающих их нервных волокон. Анализаторы представляют собой системы входа информации в мозг и анализа этой информации. Работа любого анализатора начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы и передачи их в мозг через цепи нейронов, образующих ряд уровней. Процесс передачи сенсорных сигналов сопровождается многократными их преобразованиями и перекодированием и завершается высшим анализом и синтезом (опознание образа), после чего происходит выбор или разработка программы ответной реакции организма, что уже не относится к функциям анализаторов.
Без информации, поступающей в мозг, не могут осуществляться простые и сложные рефлекторные акты вплоть до психологической деятельности человека.
Учение об анализаторах было создано И. П. Павловым. Анализатором И. П. Павлов считал совокупность нейронов, участвующих в восприятии раздражений, проведении возбуждения, а также анализе его свойств клетками коры большого мозга. Анализатор впервые рассматривался И. П. Павловым как единая система, включающая рецепторный аппарат (периферический отдел анализаторов), афферентные нейроны и проводящие пути (проводниковый отдел) и участки коры больших полушарий мозга, воспринимающие афферентные сигналы (центральный конец анализаторов). Опыты с удалением участков коры и исследованием возникающих вслед за этим нарушений условно-рефлекторных реакций привели И. П. Павлова к заключению о наличии в корневом отделе анализаторов первичных проекционных зон (ядерных зон) и так называемых рассеянных элементов, анализирующих поступающую информацию вне ядерной зоны коры большого мозга.
Общий принцип строения анализаторов.
Всем анализаторным системам высших позвоночных животных и человека свойственны следующие основные принципы строения.
1. Многослойность, т.е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторными элементами, а последний – с нейронами ассоциативных отделов коры полушарий большого мозга. Между собой слои связаны проводящими путями, образованными аксонами их нейронов.
2. Многоканальность анализаторных систем означает наличие в каждом из их слоев множества (обычно десятки тысяч, а иногда до миллионов) нервных элементов, связанных с множеством элементов следующего слоя, которые в свою очередь посылают нервные импульсы к элементам более высокого уровня. Наличие множества каналов обеспечивает анализаторам животных большую надежность и тонкость анализа.
3. Неодинаковое число элементов в соседних слоях, так называемых сенсорных «воронок». Физиологический смысл явления суживающихся воронок сводится к уменьшению количества информации, передаваемой в мозг, а в расширяющихся «воронках» - к обеспечению более дробного и сложного анализа разных признаков сигналов.
4. Дифференциация анализаторов по вертикали по горизонтали. Дифференциация по вертикали заключается в образовании отделов, состоящих обычно из того или иного числа слоев нервных элементов. Отдел – более крупное морфофункциональное образование, чем слой элементов. Каждый такой отдел (например, обонятельные луковицы, кохлеарные ядра или коленчатые тела) имеет определенную функцию.
Различают обычно рецепторный, или периферический, отдел анализаторной системы, один или чаще несколько промежуточных отделов и корковый отдел анализаторов.
Дифференциация анализаторных систем по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев.
Основные функции анализаторов.
Анализаторы выполняют большое количество функций или операций с сигналами. Среди них важнейшие:
I. Обнаружение сигналов.
II. Различение сигналов.
III. Передача и преобразование сигналов.
IV. Кодирование поступающей информации.
V. Детектирование тех или иных признаков сигналов.
VI. Опознание образов.
Обнаружение и различие сигналов (I, II) обеспечивается, прежде всего рецепторами, а детектирование и опознание (V, VI) сигналов высшими корковыми уровнями анализаторов. Между тем передача, преобразование и кодирование (III, IV) сигналов свойственны всем слоям анализаторов.
Обнаружение сигналов начинается в рецепторах – специализированных клетках, эволюционно приспособленных к восприятию из внешней или внутренней среды организма того или иного раздражителя и преобразованию его из физической или химической формы в форму нервного возбуждения.
Классификация рецепторов.
Все рецепторы разделяют на две большие группы: внешние, или экстерорецепторы, и внутренние, или интерорецепторы. К экстерорецепторам относятся: слуховые, зрительные, обонятельные, вкусовые, осязательные рецепторы, к интерорецепторам – висцерорецепторы (сигнализирующие о состоянии внутренних органов), вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата).
По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на некотором расстоянии от источника раздражения (зрительные, слуховые и обонятельные) и контактные – возбуждающиеся при непосредственном соприкосновении с ним.
В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы человека могут быть разделены на:
1) Механорецепторы, к которым относятся рецепторы слуховые, гравитационные, вестибулярные, тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы.
2) Хеморецепторы, включающиеся рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы.
3) Фоторецепторы.
4) Терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны).
5) Болевые (ноцицептивные) рецепторы, кроме которых болевые раздражения могут восприниматься и другими рецепторами.
Все рецепторные аппараты делятся на первичночувствующие (первичные) и вторичночувствующие (вторичные). К первым относятся рецепторы обоняния, тактильные рецепторы и проприорецепторы. Они отличаются тем, что восприятие и преобразование энергии раздражения. В энергию нервного возбуждения происходит у них в самом чувствительном нейроне. К вторичночувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителями и первым чувствительным нейроном находится высокоспециализированная рецепторная клетка, т.е. первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.
По своим основным свойствам рецепторы делятся также на быстро- и медленноадаптирующиеся, низко- и высокопороговые, мономодальные и полимодальные и т.д.
Адаптация анализаторов.
Анализатор работает как единая система, все звенья которой взаимосвязаны и взаимно регулируют друг друга. Состояние практически всех уровней анализатора контролируется (прямо или опосредованно) ретикулярной формацией, включающей их единую систему, интегрированную с другими отделами мозга и организма в целом. В этой интегративной деятельности особую роль приобретает адаптация анализаторов – их общее свойство, заключающееся в приспособлении всех их звеньев к постоянной интенсивности длительно действующего раздражителя. Адаптация проявляется, во-первых, в снижении абсолютной чувствительности анализатора, и, во-вторых, повышении дифференциальной чувствительности к стимулам, близким по силе к адаптирующему.
Адаптационные процессы начинаются на уровне рецепторов, охватывая все нейронные уровни анализатора. Адаптация заметно не изменяется только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленноадаптирующиеся. Первые после развития адаптационного процесса практически вообще не сообщают следующему за ними нейрону о длящемся раздражении, у вторых эта информация передается, хотя и в значительно уменьшенном виде. Когда действие постоянного раздражителя прекращается, чувствительность анализаторов повышается. Такова причина повышения световой чувствительности нашего глаза в темноте.
Эфферентная регуляция физиологических свойств анализатора проявляется изменением (настройкой) рецепторов и свойств нервных элементов анализаторов для оптимального восприятия внешних сигналов.
Давно известен комплекс реакций (например, изменение положения тела или головы, глаз и ушных раковин по отношению к источнику звукового раздражения), оптимизирующих условия восприятия сигналов.
В настоящее время получено много данных о преобразовании афферентного потока, идущего от рецепторов к высшим чувствительным центрам, под воздействием эфферентного контроля со стороны ЦНС. Этот контроль затрагивает элементы всех без исключения уровней анализатора, доходя до рецепторных аппаратов. Пути реализации эфферентных воздействий различны: изменение кровоснабжения рецепторов, влияние на мышечный тонус вспомогательных структур рецепторных аппаратов, на состояние самих рецепторов и нервных элементов следующих уровней. Эфферентные влияния в анализаторах чаще всего имеют тормозной характер, т.е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.
Общее число афферентных нервных волокон, приходящих к рецепторам или к элементам какого-либо нервного слоя анализатора, как правило, в десятки раз меньше числа афферентных нейронов, расположенных на том же уровне. Это определяет важную функциональную особенность эфферентного контроля, который имеет не тонкий и локальный, а достаточно широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части рецепторной поверхности.
Физиология зрительного анализатора.
Зрительный анализатор (или зрительная сенсорная система) – важнейший из органов чувств человека и большинства высших позвоночных животных. Он дает более 90% информации, идущей к мозгу от всех рецепторов. Благодаря опережающему эволюционному развитию именно зрительных механизмов мозг хищных животных и приматов претерпел резкие изменения и достиг значительного совершенства. Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительного анализатора, локализованными в коре мозга, решения о наличии в поле зрения того или иного зрительного образа.
Оптическая система глаза. На пути к светочувствительной оболочке глаза – сетчатке – лучи света проходят через несколько прозрачных поверхностей – переднюю и заднюю поверхности роговицы, хрусталика и стекловидного тела. Различная кривизна и показатели преломления этих поверхностей определяют преломление световых лучей внутри глаза.
Рецепторный аппарат зрительного анализатора. Структура и функции отдельных слоев сетчатки.
Сетчатка представляет собой внутреннюю оболочку глаза, имеющую сложную многослойную структуру. Здесь расположены два вида различных по своему функциональному значению фоторецепторов – палочки и колбочки и несколько видов нервных клеток с их многочисленными отростками.
Под влиянием световых лучей в фоторецепторах происходят фотохимические реакции, состоящие в изменении светочувствительных зрительных пигментов. Это вызывает возбуждение фоторецепторов, и затем синоптическое возбуждение связанных с палочками и колбочками нервных клеток. Последние образуют собственно нервный аппарат глаза, который передает зрительную информацию в центры головного мозга и участвует в ее анализе и переработке.
Пигментный слой сетчатки. Наружный слой сетчатки образован пигментным эпителием, содержащим пигмент фусцин. Этот пигмент поглощает свет, препятствуя его отражению и рассеиванию, что способствует четкости зрительного восприятия. Пигментные клетки, отростки которых окружают светочувствительные членики палочек и колбочек, принимают участие в обмене веществ в фоторецепторах и в синтезе зрительного пигмента.
Фоторецепторы. К слою пигментного эпителия изнутри примыкает слой фоторецепторов, которые своими светочувствительными члениками обращены в сторону, противоположную свету.
Каждый фоторецептор – палочка или колбочка – состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке.
Электронно-микроскопические исследования выявили, что наружный сегмент каждой палочки состоит из 400-800 тонких пластинок, или дисков, диаметром около 6 мкм. Каждый диск представляет собой двойную мембрану, состоящую из мономолекулярных слоев липидов, находящихся между слоями молекул белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина.
Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрилл. Внутренний сегмент переходит в отросток, с помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку.
У человека в глазу имеется около 6-7 млн. колбочек и 110-125 млн. палочек. Палочки и колбочки распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140000 колбочек на 1 мм2). По направлению к периферии сетчатки число колбочек уменьшается, а количество палочек возрастает. Периферия сетчатки содержит почти исключительно палочки. Колбочки функционируют в условиях ярой освещенности и воспринимают цвета; палочки являются рецепторами, воспринимающими световые лучи в условиях сумеречного зрения.
Раздражение различных участков сетчатки показывает, что различные цвета воспринимаются лучше всего при действии световых раздражителей на центральную ямку, где расположены почти исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становиться все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Световая чувствительность колбочкового аппарата сетчатки во много раз меньше таковой элементов, связанных с палочками. Поэтому в сумерках в условиях малой освещенности, центральное колбочковое зрение резко понижено и преобладает периферическое палочковое зрение. Так как палочки не воспринимают цвета, то в сумерках человек цвета не различает.
Слепое пятно. Место входа зрительного нерва в глазное яблоко – сосок зрительного нерва – не содержит фоторецепторов и поэтому нечувствительно к свету; это так называемое слепое пятно. В существовании слепого пятна можно убедиться с помощью опыта Мариотта.
Нейроны сетчатки. Кнутри от слоя фоторецепторных клеток в сетчатке расположен слой биполярных нейронов, к которым изнутри примыкает слой ганглиозных нервных клеток.
Аксоны ганглиозных клеток образуют волокна зрительного нерва. Таким образом, возбуждение, возникающее в фоторецепторе при действии света, попадает на волокна зрительного нерва через нервные клетки – биполярные и ганглиозные.
В синапсах между биполярными и ганглиозными клетками выявлена холинэстераза; это служит указанием на то, что передача импульса с одной клетки на другую совершается с помощью медиатора ацетилхолина.
Фотохимические реакции в рецепторах сетчатки.
В палочках сетчатки человека и многих животных содержится пигмент родопсин, или зрительный пурпур, состав, свойства и химические превращения которого подробно изучены в последние десятилетия. В колбочках найден пигмент йодопсин. В колбочках имеются также пигменты хлоролаб и эритролаб; первый из них поглощает лучи, соответствующие зеленой, а второй – красной части спектра.
Родопсин представляет собой высокомолекулярное соединение (молекулярная масса 270000), состоящее из ретиналя – альдегида витамина А и балка опсина. При действии кванта света происходит цикл фотофизических и фотохимических превращений этого вещества: ретиналь изомеризуется, его боковая цепь выпрямляется, связь ретиналя с белком нарушается, активируются ферментативные центры белковой молекулы. После чего ретиналь отщепляется от опсина. Под влиянием фермента, названного редуктазой ретиналя, последний переходит в витамин А.
При затемнении глаз происходит регенерация зрительного пурпура, т.е. ресинтез родопсина. Для этого процесса необходимо, чтобы сетчатка получала цис-изомер витамина А, из которого образуется ретиналь. Если же витамин А в организме отсутствует, образование родопсина резко нарушается, что и приводит к развитию куринной слепоты.
Фотохимические процессы в сетчатке происходит весьма экономно, т.е. при действии даже очень яркого света расщепляется только небольшая часть имеющегося в палочках родопсина.
Структура йодопсина близка к родопсину. Йодопсин представляет собой также соединение ретиналя с белком опсином, который образуется в колбочках и отличается от опсина палочек.
Поглощение света родопсином и йодопсином различно. Йодопсин в наибольшей степени поглощает желтый свет с длиной волны около 560 нм.
Цветовое зрение.
На длинноволновом краю видимого спектра находятся лучи красного цвета (длина волны 723-647 нм), на коротковолновом – фиолетового (длина волны 424-397 нм). Смешение лучей всех спектральных цветов дает белый цвет. Белый цвет может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, желтого и синего. Если произвести смешение цветов, взятых из разных пар, то можно получать промежуточные цвета. В результате смешения трех основных цветов спектра – красного, зеленого и синего – могут быть получены любые цвета.
Теории цветоощущения. Существует ряд теорий цветоощущения, наибольшим признанием пользуется трехкомпонентная теория. Она утверждает существование в сетчатке трех разных топов цветовоспринимающих фоторецепторов – колбочек.
О существовании трехкомпонентного механизма восприятия цветов говорил еще М. В. Ломоносов. В дальнейшем эта теория была сформулирована в 1801 году Т. Юнгом и замет развита Г. Гельмгольцем. Согласно этой теории, в колбочках находятся различные светочувствительные вещества. Одни колбочки содержат вещество чувствительное к красному цвету, другие – зеленому, третьи – к фиолетовому. Всякий цвет оказывает действие на все три цветоощущающих элемента, но в разной степени. Эти возбуждения суммируются зрительными нейронами и, дойдя до коры, дают ощущение того или иного цвета.
Согласно другой теории, предложенной Э. Герингом, в колбочках сетчатки существуют три гипотетических светочувствительных вещества: бело-черный, красно-зеленый и желто-синий. Распад этих веществ под влиянием света приводит к ощущению белого, красного или желтого цвета. Другие световые лучи вызывают синтез этих гипотетических веществ, вследствие чего появляется ощущение черного, зеленого и синего цвета.
Наиболее веские подтверждения в электрофизиологических исследованиях получила трехкомпонентная теория цветового зрения. В экспериментах на животных с помощью микроэлектродов отводились импульсы от одиночных ганглиозных клеток сетчатки при освещении ее разными монохроматическими лучами. Оказалось, что электрическая активность в большинстве нейронов возникала при действии лучей любой длины волны в видимой части спектра. Такие элементы сетчатки названы доминаторами. В других же ганглиозных клетках (модуляторах) импульсы возникали лишь при освещении лучами только определенной длины волны. Выявлено 7 модуляторов, оптимально реагирующих на свет с разной длиной волны (от 400 до 600 нм). Р. Гранит считает, что три компонента цветовосприятия, предполагавшиеся Т. Юнгом и Г. Гельмгольцем, получаются в результате усреднения кривых спектральной чувствительности модуляторов, которые могут быть сгруппированы соответственно трем основным частям спектра: сине-фиолетовой, зеленой и оранжевой.
При измерении микроспектрофотометром поглощения лучей разной длины волны одиночной колбочкой оказалось, что одни колбочки максимально поглощают красно-оранжевые лучи, другие – зеленые, третьи – синие лучи. Таким образом, в сетчатке выявлены три группы колбочек, каждая из которых воспринимает лучи, соответствующие одному из основных цветов спектра.
Трехкомпонентная теория цветового зрения объясняет ряд психофизиологических феноменов, например последовательные цветовые образы, и некоторые факты патологии цветовосприятия (слепота по отношению к отдельным цветам). В последние годы в сетчатке и зрительных центрах исследовано много так называемых оппонентных нейронов. Они отличаются тем, что действие на глаз излучений в какой-то части спектра их возбуждает, а в других частях спектра – тормозит. Считают, что такие нейроны наиболее эффективно кодируют информацию о цвете.
Дата добавления: 2015-05-19 | Просмотры: 784 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
|