АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Основные теоремы о дифференцируемых функциях
Познакомившись в предыдущих параграфах с техникой дифференцирования функций, займемся теперь изучением связи между свойствами производной и свойствами функции. При этом будут существенно использоваться несколько теорем, называемых основными теоремами дифференциального исчисления или основными теоремами о дифференцируемых функциях. Поэтому сначала докажем их.
Теорема 1 (Ферма). Пусть функция определена на промежутке Х и во внутренней точке этого промежутка принимает наибольшее или наименьшее значение. Тогда, если в точке существует конечная производная, то она равна нулю, то есть .
Доказательство. Рассмотрим случай, когда – наибольшее значение функции на промежутке Х. Тогда для всех . По определению . Если справа, то . Если слева, то . Таким образом, одновременно должно быть и , что возможно только тогда, когда .
Случай, когда – наименьшее значение функции на промежутке Х, рассматривается аналогично.
Геометрический смысл теоремы Ферма состоит в том, что в точке с абсциссой касательная к кривой , если она существует, параллельна оси Ох.
Заметим, что в доказательстве теоремы существенно использовался тот факт, что точка – внутренняя, поскольку рассматривались точки х и правее, и левее точки .
| | Теорема доказана.
Пьер Ферма (1601-1665) занимался математикой на досуге, работая в Тулузе (Франция) юристом. Вместе с Паскалем является основателем математической теории вероятностей. Занимался также геометрией и теорией чисел. Наиболее известна «великая теорема Ферма», которая утверждает, что уравнение для не имеет решений при натуральных значениях . Доказана эта теорема только в 1994 году.
Следующая теорема принадлежит Мишелю Роллю (1652-1719), французскому математику.
Теорема 2 (Ролля). Пусть функция определена на отрезке , причем:
1) непрерывна на ;
2) в интервале существует конечная производная ;
3) .
Тогда в интервале найдется точка с такая, что .
Доказательство. Поскольку непрерывна на отрезке , то по 2-ой теореме Вейерштрасса она принимает на свое наибольшее значение М и наименьшее значение m. Возможны два случая:
1) М = m, т.е. для всех . Тогда для всех и в качестве с можно взять любую точку из .
2) . Поскольку , то хотя бы одно из значений М или m функция принимает в интервале , т.е. в некоторой точке . Так как по условию существует, то по теореме Ферма .
Теорема доказана.
| | | | | | | | Геометрически теорема Ролля означает, что если непрерывная кривая является графиком дифференцируемой функции, то между двумя точками кривой, имеющими одинаковую ординату, всегда найдется точка, в которой касательная параллельна оси Ох.
| | |
Теорема 3 (Лагранжа). Пусть функция определена на отрезке , причем:
1) непрерывна на ;
2) в интервале существует конечная производная .
Тогда существует точка , такая, что
. (6.1)
Доказательство. Рассмотрим на вспомогательную функцию
.
Каждая из функций в правой части непрерывна на , дифференцируема в , поэтому и удовлетворяет этим же условиям. Кроме того, , т.е. . Таким образом, функция удовлетворяет условиям теоремы Роля, поэтому по этой теореме найдется точка такая, что , т.е.
,
откуда
.
Теорема доказана.
Формула (6.1) называется формулой Лагранжа. Ее часто используют в виде
. (6.2)
Выясним геометрический смысл формулы Лагранжа.
| | | | | | | | Рассмотрим дугу АВ кривой и секущую АВ. Ясно, что , где − угол между секущей АВ и осью Ох. Из геометрического смысла производной следует, что , где − угол между касательной к кривой в точке и осью Ох. Из формулы Лагранжа следует, что , т.е. на дуге АВ есть точка, в которой касательная параллельна секущей АВ.
| | |
Жозеф Луи Лагранж (1736-1813) родился в Турине в итало-французской семье. В 19 лет стал профессором математики артиллерийской школы в Турине. В 1766 году был приглашен Фридрихом II в Берлин, написавшим в приглашении, что «необходимо, чтобы величайший геометр Европы проживал вблизи величайшего из королей». В 1786 году после смерти Фридриха II переехал в Париж. Занимался вариационным исчислением, алгеброй, теорией чисел, математическим анализом, небесной механикой.
Замечание. Теорема Ролля является частным случаем теоремы Лагранжа., когда (секущая параллельна оси Ох).
Рассмотрим теперь не весь отрезок , а его часть , где . Применим к отрезку формулу Лагранжа: , где . Можно записать , где . (достаточно положить ). Тогда получим формулу , называемую формулой конечных приращений. Эта формула устанавливает точное выражение для приращения функции при любом конечном значении приращения , в отличие от приближенной формулы , в этих формулах в разных точках вычисляются значения производной.
Так как мы не знаем, чему равно с, то и значение , как правило, нам неизвестно. Тем не менее, полученная формула находит большое применение в теоретических исследованиях.
Теорема 4 (Коши). Пусть на отрезке заданы функции и , причем:
1) и непрерывны на ;
2) в интервале существуют производные и , .
Тогда существует точка такая, что
.
Эта формула называется формулой Коши.
Доказательство. Заметим сначала, что формула имеет смысл. Действительно, по условию. Кроме того, , так как в противном случае было бы и по теореме Роля нашлась бы точка в интервале , в которой обратилась бы в нуль, а это невозможно по условию.
Рассмотрим вспомогательную функцию . Эта функция удовлетворяет условиям теоремы Роля: непрерывна на , дифференцируема в , . Поэтому найдется точка такая, что , т.е. , откуда .
Теорема доказана.
Замечания. 1) Теорема Лагранжа является частным случаем теоремы Коши при .
2) Теоремы Роля, Лагранжа и Коши называют теоремами о средних значениях, поскольку в них идет речь о значениях производных при средних значениях аргумента (а и b – крайние, с – среднее значения). При этом теорему Коши часто называют обобщенной теоремой о среднем значении.
Дата добавления: 2015-01-18 | Просмотры: 773 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|