Метаболизм бактерий. Хемосинтез. Аэробные и анаэробные бактерии. Полное и неполное окисление. Анаэробное дыхание
Метаболизм – совокупность разнообразных ферментативных реакций, происходящих в микробной клетке и направленных на получение энергии и превращение простых химических соединений в более сложные. Метаболизм обеспечивает воспроизводство всего клеточного материала, включая два единых и одновременно противоположных процесса – конструктивный и энергетический обмен.
Метаболизм протекает в три этапа:
1.катаболизм – распад органических веществ на более простые фрагменты;
2.амфиболизм – реакции промежуточного обмена, в результате которых простые вещества превращаются в ряд органических кислот, фосфорных эфиров и пр.;
3.анаболизм – этап синтеза мономеров и полимеров в клетке.
Метаболические пути формировались в процессе эволюции.
Основным свойством бактериального метаболизма является пластичность и высокая интенсивность, обусловленная малыми размерами организмов.
К метаболическим путям у прокариот относятся брожение, фотосинтез и хемосинтез.
Хемосинтез – способ питания, при котором источником энергии для синтеза органических веществ служат процессы окисления различных неорганических и неорганических веществ. Хемосинтез часто сравнивают с дыханием, у микроорганизмов дыхание может быть аэробным и анаэробным.
При аэробном дыхании образующаяся в процессе гликолиза пировиноградная кислота в конечном итоге полностью окисляется кислородом до СО2 и воды. В первой фазе пировиноградная кислота расщепляется с образованием СO2 и водорода. Этот процесс протекает в матриксе митохондрий и включает в себя последовательность реакций, называемую циклом Кребса. Во второй фазе отщепившийся водород через ряд окислительно-восстановительных реакций — в так называемой дыхательной цепи — окисляется в конечном счете молекулярным кислородом до воды. Это происходит на так называемых кристах (гребневидных складках внутренней мембраны митохондрий).
Анаэробное дыхание – это энергодающий клеточный процесс, в котором конечным акцептором электронов служит окисленное органическое или неорганическое вещество, отличное от кислорода.
Анаэробное дыхание сопряжено с функционированием электрон-транспортной цепи и является в эволюции энергетических процессов в клетках живых организмов переходным звеном от субстратного фосфорилирования к аэробному дыханию.
Акцептор электронов
| Восстановленный продукт
| Процесс
| Микроорганизмы, которые осуществляют данный процесс
| NO3-
| NO2-
| «Нитратное дыхание» - диссимиляционная нитратредукция
| Бактерии семейства Enterobacteriaceae, рода Bifidobacteriaceae
| NO3-
| NO2- àN2OàN2
| «Нитратное дыхание» - денитрификация
| Pseudomonas, Bacillus
| CO2
| CH4
| «Карбонатное дыхание» – метаногенез
| Метаногенные археи
| CO2
| Ацетат
| «Карбонатное дыхание» – ацетогенез
| Гомоацетогенные бактерии (Clostridium, Sporomusa, Acetobacterium, Peptostreptococcus, Eubacterium)
| Fe3+
| Fe2+
| «Железное дыхание»
| Geobacter
| 2[H+] + фумарат
| Сукцинат
| «Фумаратное дыхание»
| Энтеробактерии, вибрионы и пропионовые бактерии
|
Большинство аэробных организмов окисляет питательные вещества в процессе дыхания до углекислого газа и воды.
Поскольку в молекуле СО2 достигается наивысшая степень окисления углерода, процесс называется полным окислением.
При неполном окислении в качестве продуктов обмена выделяются частично окисленные органические соединения, такие как уксусная, фумаровая, лимонная, яблочная, молочная кислоты. Субстратом в данном случае становятся углеводы и органические спирты.
Полное окисление может происходить при использовании цикла трикарбоновых кислот с участием дегидрогеназ никотинамиддинуклеотида, флавинамиддинуклеотида и коэнзима ацетилирования
Этот метаболический путь не только приводит к полному окислению питательных веществ, но играет значительную роль в биосинтетических процессах. В результате поступления протонов на АТФ-регенирирующую систему дыхательной цепи активируется АТФ-синтетеза и образуется АТФ для обеспечения клетки энергией. В дыхательной цепи главная роль отводится ферментам – цитохромам, флавопротеинам и железосерным белкам. В процессе дыхания аэробных микроорганизмов пировиноградная кислота подвергается полному окислению до CO2 и H2O, вступая в сложный цикл превращений (цикл Кребса) с образованием три- и дикарбоновых кислот, последовательно окисляющихся (отщепляется Н2) и декарбоксилирующихся (отщепляется СО2).
+Гидроксидный радикал (ОН') возникает при радиолизе воды и при взаимодействии супероксиданиона с перекисью водорода (Н2О2), катализируемом железосодержащими соединениями, всегда имеющимися в клетках и превосходит О2 по окислительной активности и токсичности.Н2О2 + Fe2+ Fe3+ + ОН' + ОН'
Гидроксидные радикалы даже при низких концентрациях являются самыми сильными из всех известных окислителей, вызывающим радиационные повреждения многих типов биополимеров.
+ Перекись водорода образуется при переносе 2 электронов на О2. Катализаторами в реакциях выступают оксидазы прокариот флавиновой природы и некоторые цитохромы. Перекись водорода образуется у всех аэробов и факультативных анаэробов, растущих в аэробных условиях, так что ее возникновение в клетках прокариот – естественный процесс. Перекись водорода – наиболее стабильный из промежуточных продуктов восстановления О2, но и наименее реакционноспособный. У большинства аэробных прокариот Н2О2 быстро разлагается с помощью гемсодержащих ферментов каталазы и пероксидазы. В отсутствие их Н2О2 может накапливаться в летальных для организма концентрациях.
+ Синглетный кислород возникает в определенных условиях, когда молекула О2 переходит в одно из возбужденных состояний (*О2). У большинства живых клеток в темноте основным источником синглетного кислорода служит спонтанная дисмутация супероксидных анионов. Синглетный кислород может возникать также при взаимодействии двух радикалов и вызывает структурные и иные клеточные повреждения.
Дыхательная цепь или электрон-транспортная система у прокариот расположена на цитоплазматической мембране (у эукариот – во внутренней мембране митохондрий). Главная функция этой системы – перекачивание протонов, поэтому ее часто называют «протонным насосом».
Через мембрану протоны транспортируются таким образом, что между внутренней и внешней сторонами мембраны создается электрохимический градиент с положительным потенциалом снаружи и отрицательным внутри. Этот перепад заряда возникает благодаря определенному расположению компонентов дыхательной цепи в мембране и служит движущей силой для процесса регенерации АТФ (или других процессов, требующих затрат энергии).
Водород восстановленного НАД2Н передается на кофермент (ФАД) флавинового фермента, который восстанавливается в ФАДх2Н. С восстановленной флавиновой дегидрогеназы водород передается на цитохром цитохромной системы, при этом атом водорода расщепляется на ион водорода и электрон. Цитохром из окисленной формы превращается в восстановленную. Восстановленный цитохром передает электроны следующему цитохрому и т. д.
Цитохромы попеременно то восстанавливаются, то окисляются, что связано с изменением валентности железа, содержащегося в их простетической группе. Последний цитохром передает электроны цитохромоксидазе, восстанавливая ее кофермент. Завершающей реакцией является окисление восстановленной цитохромоксидазы молекулой кислорода. Кислород за счет передачи ему (с цитохромоксидазы) электронов активируется и приобретает способность соединяться с ионами водорода, в результате чего образуется вода. На этом и заканчивается у аэробов полное окисление исходного органического вещества.
Освобождающаяся при переносе электронов в дыхательной цепи энергия затрачивается на синтез АТФ из АДФ и неорганического фосфата под воздействием АТФ-синтетазы, локализующейся на мембране. Такой синтез АТФ за счет энергии транспорта электронов через мембрану называется окислительным фосфорилированием.
В механизме дыхания особо важны следующие три участка:
*компоненты дыхательной цепи;
*их оксилительно-восстановительные потенциалы;
*их взаиморасположение в мембране.
Компоненты дыхательной цепи – это ферментные белки с относительно прочно связанными низкомолекулярными простетическими группами, погруженные в двойной липидный слой. Важнейшие из них – флавопротеины, железосерные белки, хиноны и цитохромы.
Флавопротеины – ферменты, содержащие в качестве простетических групп ФАД, выполняют функцию переносчиков водорода.
Железосерные белки – это оксилительно-восстановительные системы, переносящие электроны. Они содержат атомы железа, связанные с серой цистеина и с неорганической сульфидной серой. Таким образом, Fe-S-центры являются простетическими группами белков. Железосерные белки участвуют также в процессе азотфиксации. Некоторые белки имеют название, связанное с их происхождением или с функциями: ферредоксин, путидаредоксин, рубредоксин, адренодоксин.
Хиноны – липофильные соединения, локализующиеся в липидной фазе мембраны, способны переносить водород и электроны. Обычно содержатся в мембране в избытке и случат сборщиками водорода, получая его от коферментов, передают цитохромам. У грамотрицательных бактерий содержится убихинон (кофермент Q), у грамположительных – нафтохиноны, в хлоропластах растений – пластохиноны.
Цитохромы – системы, переносящие только электроны, водород не транспортируют. В качестве простетической группы цитохром содержит гем. Центральный атом железа геминового кольца участвует в переносе электронов, изменяя свою валентность. Цитохромы окрашены и различаются по видам а, а3, в, с, о и т.д.
Оксилительно-восстановительный потенциал – это количественная мера способности тех или иных соединений или элементов отдавать электроны. Водородный полуэлемент – платинированный или платиновый электрод, погруженный в раствор кислоты и обтекаемый газообразным Н2 при давлении 1,012 бар и рН 0, имеет потенциал, равный нулю.
Эта величина Е0. Е` – измеряемый потенциал окислительно-восстановительной системы, значение его тем более отрицательно, чем меньше отношение концентрации окисленной формы к концентрации восстановленной формы.
Уникальной способностью к биолюминесценции обладает несколько групп бактерий. К светящимся бактериям относят грамотрицательные палочковидные морские бактерии, хемоорганотрофные, галофильные, психрофильные, факультативно-анаэробные, свободноживущие или симбиотические, например Photobacterium rhosphoreum и P. leiognathi, живущие в светящихся органах у рыб.
В аэробных условиях микроорганизмы осуществляют процесс аэробного дыхания и свечения.
У них имеется обычная дыхательная цепь и работает цикл Кребса.
Свечение зависит от окисления длинноцепочечного альдегида с 13 – 18 атомами углерода в молекуле.
Светится возбужденный флавин под действием люциферазы – двухсубъединичного фермента типа монооксигеназы. К свечению способны бактерии родов Photobacterium, Beneckia, Vibrio, Photorhabdus.
Дата добавления: 2015-09-03 | Просмотры: 1909 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |
|