АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Метаболизм бактерий. Хемосинтез. Дыхательный аппарат клетки. Метаболизм бактерий. Хемосинтез. Энергетический обмен микроорганизмов

Прочитайте:
  1. A. снижение основного обмена
  2. I. Морфологическая характеристика лимфатического аппарата.
  3. II. Повреждение мембранного аппарата и ферментных систем клетки.
  4. III группа – Поздние обменные нарушения.
  5. III группа – Поздние обменные нарушения.
  6. III группа – Поздние обменные нарушения.
  7. III группа – Поздние обменные нарушения.
  8. III. Нарушение обменов ионов.
  9. V Фосфопротеины обладают стимулирующим действием на клеточный обмен веществ
  10. V. ПАТОЛОГИЯ УГЛЕВОДНОГО ОБМЕНА

Метаболизм – совокупность разнообразных ферментативных реакций, происходящих в микробной клетке и направленных на получение энергии и превращение простых химических соединений в более сложные. Метаболизм обеспечивает воспроизводство всего клеточного материала, включая два единых и одновременно противоположных процесса – конструктивный и энергетический обмен.

Метаболизм протекает в три этапа:

1.катаболизм – распад органических веществ на более простые фрагменты;

2.амфиболизм – реакции промежуточного обмена, в результате которых простые вещества превращаются в ряд органических кислот, фосфорных эфиров и пр.;

3.анаболизм – этап синтеза мономеров и полимеров в клетке.

Метаболические пути формировались в процессе эволюции.

Основным свойством бактериального метаболизма является пластичность и высокая интенсивность, обусловленная малыми размерами организмов.

К метаболическим путям у прокариот относятся брожение, фотосинтез и хемосинтез.

Хемосинтез – способ питания, при котором источником энергии для синтеза органических веществ служат процессы окисления различных неорганических и неорганических веществ. Хемосинтез часто сравнивают с дыханием, у микроорганизмов дыхание может быть аэробным и анаэробным.

 

Энергетический обмен микробов значительно более разнообразен, чем у высших организмов. Очень распространены у микроорганизмов анаэробные превращения веществ по гликолитическому пути, гексозомонофосфатному и пути Энтнера-Дудорова.

В качестве источника питания и энергии при выращивании в искусственных условиях бактерии наиболее часто используют углеводы. Способность утилизировать различные углеводы –важный диагностический признак. Базовый субстрат — глюкоза, которую бактерии разлагают в процессе дыхания либо брожения. Многие реакции катаболизма глюкозы протекают одинаково у аэробных и анаэробных бактерий, в частности три пути превращения гексоз в триозы (гликолиз, пентозофосфатный путь и путь Энтнера-Дудорова). Результатом гликолиза является превращение одной молекулы глюкозы в две молекулы пировиноградной кислоты (ПВК) и образование двух восстановительных эквивалентов в виде кофермента НАД∙H.

Полное уравнение гликолиза имеет вид:

Глюкоза + 2НАД+ + 2АДФ + 2Фн = 2НАД∙Н + 2ПВК + 2АТФ + 2H2O + 2Н+.

При отсутствии или недостатке в клетке кислорода пировиноградная кислота подвергается восстановлению до молочной кислоты, тогда общее уравнение гликолиза будет таким:

Глюкоза + 2АДФ + 2Фн = 2лактат + 2АТФ + 2H2O.

Таким образом, при анаэробном расщеплении одной молекулы глюкозы суммарный чистый выход АТФ составляет две молекулы, полученные в реакциях субстратного фосфорилирования АДФ.

У аэробных организмов конечные продукты гликолиза подвергаются дальнейшим превращениям в биохимических циклах, относящихся к клеточному дыханию. В итоге после полного окисления всех метаболитов одной молекулы глюкозы на последнем этапе клеточного дыхания — окислительном фосфорилировании, происходящем на митохондриальной дыхательной цепи в присутствии кислорода, — дополнительно синтезируются ещё 34 или 36 молекулы АТФ на каждую молекулу глюкозы.

Гликолитический путь (гликолиз, путь Эмбдена-Мейерхофа-Парнаса, фруктозо-1,6-дифосфатный путь) доминирует у большинства аэробных и анаэробных микроорганизмов — кишечной палочки, бацилл, пенициллов, дрожжей, стрептомицетов и многих других. Характерная реакция гликолиза — расщепление фруктозо-1,6-дифосфата альдолазой, в результате чего образуется смесь триозофосфатов, состоящая из дигидрооксиацетонфосфата и глицероальдегидтрифосфата, которые затем превращаются в пируват. Фермент обратной связи, лимитирующий скорость процесса, — фруктозо-6-фосфат дегидрогеназа (фосфофруктокиназа). В этом процессе образуется 2 моля АТФ и 2 моля восстановленного НАД (НАДН+ на 1 моль глюкозы.

Пентозофосфатный путь (схема Варбурга-Диккенса-Хореккера-Рэкера, фосфоглюконатный путь) включает не только образование пентозофосфатов, но и реакции превращения пентозофосфатов в триозо-3-фосфаты. В результате изомеризации фруктозо-6-фосфата в глюкозо-6-фосфат и конденсации двух молекул триозо-3-фосфата в гексозофосфат все перечисленные реакции замыкаются в цикл, при одном обороте которого из 3 молекул глюкозо-6-фосфата образуются 2 молекулы фруктозо-6-фосфата, одна молекула триозо-3-фосфата, 3 молекулы С02 и трижды по 2 восстановленных НАДФ (НАДФН+). Последовательность подобных превращений глюкозы у бактерий идентична таковой у высших организмов. Этот путь катаболизма глюкозы следует рассматривать как второстепенный, но имеющий специальное назначение — источник пентоз для синтеза нуклеиновых кислот, а также источник восстановительных эквивалентов НАДФН+.

 


Дата добавления: 2015-09-03 | Просмотры: 1100 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)