АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Биологическая мотивация
Любые, даже незначительные отклонения во внутренней среде организма немедленно воспринимаются многочисленными рецепторами. Это баро-, механо-, термо-, осмо-, глюкорецепторы и другие, то есть рецепторы, реагирующие на изменение давления, на механические, температурные воздействия, изменения осмотического давления крови, содержание глюкозы в крови. Такие рецепторы находятся во внутренних органах (желудке, печени, сердце), в стенках сосудов и в различных структурах мозга (в гипоталамусе, ретикулярной формации среднего и продолговатого мозга). Так, в передней преоптической зоне гипоталамуса находятся терморецепторы. Глюкорецепторы, реагирующие на содержание и доступность глюкозы для клеток, присутствуют в промежуточном мозге, печени, желудке и тонком кишечнике.
Часто сдвиги во внутренней среде оказывают комплексное действие на разные типы рецепторов. Так, изменение в организме водно-солевого баланса возбуждает многочисленные осморецепторы, расположенные в переднем гипоталамусе. Они активируются повышением внутриклеточной концентрации солей при утрате клетками воды. Организм реагирует не только на внутриклеточный дефицит воды, но и на потерю воды из внеклеточного пространства. Предполагают, что к этому причастны рецепторы растяжения в стенках крупных вен вблизи сердца. Кроме того, потеря воды в организме вызывает уменьшение слюноотделения. Это также возбуждает специальные водные рецепторы в слизистой рта и глотки и ощущается как сухость во рту.
Рецепторы внутренней среды (интерорецепторы) обеспечивают непрерывное наблюдение за состоянием внутренней среды организма. Их возбуждение включает гомеостатический механизм, автоматически компенсирующий возникший во внутренней среде сдвиг.
Так, при перегревании активируется вегетативная нервная система, в результате усиливается потоотделение, выделение слюны, расширяются периферические сосуды. Одновременно с помощью адреналина и глюкогена из резервов организма в кровь выделяется сахар и т.п. Работа этих механизмов направлена на согревание организма за счет имеющихся ресурсов и изменения режимов функционирования различных его систем.
Если же отклонения во внутренней среде достигают таких величин, которые не могут быть скомпенсированы гомеостатической саморегуляцией, то включается второй механизм в виде специализированного поведения. Сдвиги во внутренней среде, инициирующие поведение, отражают появление потребности. А поведение, направленное на ее удовлетворение, называют мотивированным поведением. Оно направлено на устранение нежелательных сдвигов во внутренней среде через взаимодействие с определенными объектами внешнего мира.
Мотивация – нервныепроцессы, контролирующие подготовительную деятельность, побуждающие и направляющие организм к осуществлению целостного поведенческого акта и осуществляющие контроль готовности организма к его выполнению. Мотивы – побуждения к деятельности, связанные с удовлетворением потребностей субъекта; совокупность внешних или внутренних условий, вызывающих активность субъекта и определяющих ее направленность.
Следует сказать, что пока нет согласия между разными авторами в отношении содержания самого термина “мотивация”. Мотивация буквально означает “то, что вызывает движение”. На этом основании наиболее часто этот термин используют для обозначения некоторой тенденции, которая стремится выявить себя в поведении. Когда же пытаются уточнить содержание этого понятия, то выделяют различные аспекты этого механизма.
Согласно одной точки зрения мотивация – это состояние, которое развивается в структурах центральной нервной системы во время поведения. Объективно оно выражается в изменении электрической активности мозга, биохимии мозга и, по-видимому, в изменениях на молекулярном уровне. В субъективном плане мотивации соответствует появление определенных переживаний. Так возникает чувство жажды, которое мы испытываем, не напившись воды, или чувство голода, когда давно не ели.
Другой подход связан с пониманием мотивации как некоторого начального толчка (побуждения), который всегда переходит в поведение, характеризующееся наличием определенной цели. И мотивация в этом случае становится синонимом целенаправленного поведения. Цель – главное звено в мотивации. Поэтому П.В. Симонов определяет мотивацию через механизм формирования цели: “Мотивация – это физиологический механизм активирования хранящихся в памяти следов тех внешних объектов, которые способны удовлетворить имеющуюся у организма потребность, и тех действий, которые способны привести к ее удовлетворению”. Согласно А.Н. Леонтьеву, мотивация – опредмеченная потребность. Главное в таком определении: мотивация – само целенаправленное поведение.
Стремление выделить в мотивации две стороны, два аспекта характерно и для обыденной речи. Часто используют термин “мотивация”, вкладывая в него двойной смысл. Так, говоря о голоде, имеют в виду либо ощущение голода как выделение некоторого состояния, либо намере-ние действовать, чтобы удовлетворить голод, подчеркивая тем самым операционный или поведенческий аспект мотивации.
Таким образом, когда говорят о мотивации, выделяют две фазы:
1) фазу детекции специфического состояния, выражающего появление определенного дефицита во внутренней среде, то есть возникновение потребности;
2) фазу запуска и реализации специализированного целенаправленного поведения в отношении тех внешних объектов, которые способны удовлетворить данную потребность.
Первая фаза инициирует вторую.
Рассмотрим мотивацию как состояние. Долгое время оставался нерешенным вопрос о специфичности мотивационных состояний. Было неясно, существует столько же мотивационных состояний, сколько и потребностей. Или же существует единое мотивационное состояние как общая неспецифическая функция для всех видов поведения.
Физиологические особенности мотивационных состояний впервые были изучены П.К. Анохиным, которым и было сформулировано положение о специфичности неспецифической активации. Вопреки устоявшейся точке зрения о том, что неспецифическая активация коры больших полушарий со стороны ретикулярной формации различается лишь интенсивностью и локализацией, он предположил у нее существование биологических модальностей.
Первые данные о различии восходящих к коре возбуждений были получены на кошке, получившей уретановый наркоз. Оказалось, что уретан избирательно блокировал ЭЭГ-реакции пробуждения и возникновение ориентировочных реакций. В то же время он не затрагивал корковую активацию на болевое раздражение. Было сделано заключение, что есть, по крайней мере, два типа восходящих активаций, которые различаются нейрохимически. Дальнейшие эксперименты подтвердили, что кора мозга получает отнюдь не монотонные возбуждения. Эти возбуждения, формируясь на уровне подкорковых аппаратов, уже там приобретают биологическую специфику, которая радикальным образом определяет всю судьбу активирующих возбуждений на корковом уровне.
Для оборонительной мотивации бодрствующего животного, так же как для ориентировочного рефлекса, характерна определенная картина электрической активности мозга. У кролика в задних областях коры и в ряде подкорковых образований (гиппокампе, медиальном таламусе) возникает своеобразный ритм с частотой 5–7 колебаний в секунду, который отличается своей исклю-чительной упорядоченностью и регулярностью. Этот ритм получил название тета-ритма или ритма напряжения (стресс ритма).
Во время пищевой мотивации вместо тета-ритма возникают пачкообразные приступы учащенных и высокоамплитудных колебаний. Они усиливаются во время подкрепления голодного животного пищей.
Как видно из рис. 1, в ответ на условный стимул пищевого рефлекса (звонок) животное сначала реагирует общей реакцией настораживания – усилением тета-ритма. Но с подачей пищи она сменяется характерной для пищевого возбуждения ЭЭГ-активностью – частыми высокоамплитудными колебаниями. В ретикулярной формации этот вид активности возникает и до подачи пищи (показано стрелкой).
Рис. 1. Типичное изменение электрической активности ретикулярной формации и других структур мозга кролика, соответствующее пищевому возбуждению. Отчетливо видны высокоамплитудные, высокочастотные колебания, которые предваряются тета-ритмом на включение условного раздражителя (звонка). А - сенсомоторная, Б - височная, В - затылочная кора, Г - гиппокамп, Д - ретикулярная формация; нижняя кривая - отметка времени (с) и звонка. Вертикальными стрелками выделена подача пищи. Косой стрелкой показано появление активности пищевого возбуждения в ретикулярной формации (по П.К. Анохину)
Гетерогенность восходящих к коре возбуждений выявлена и фармакологически. Активация мозга при разной мотивации имела различную химическую природу. Тета-ритм, вызываемый болевым раздражением, полностью блокируется инъекцией аминазина.
На рис. 2 показано, что звук – условный сигнал болевого раздражения – в обычных условиях вызывает хорошо выраженный ритм настораживания, а в сенсомоторной коре – ЭЭГ-десинхрони-зацию (а). Однако тот же условный раздражитель после инъекции аминовазина ни тета-ритма, ни ЭЭГ-десинхронизации не вызывает (б). Вместо тета-ритма регистрируются медленные волны. При этом болевое раздражение также не способно вызывать стресс-ритм. Одновременно исчезают и поведенческие оборонительные реакции (условные и безусловные). Вместе с тем, животное остается бодрым и адекватно реагирует на пищевые условные раздражители. Сохранными остаются и ориентировочные реакции. Таким образом, аминазин избирательно подавляет лишь оборонительное мотивационное возбуждение, не затрагивая пищевого и ориентировочного.
Рис. 2. Введение аминазина блокирует тета-ритм, вызванный оборонительным мотивационным возбуждением; а - до, б - после введения аминазина; А - сенсомоторная, Б - сенсомоторная - височная, В - височная, Г - затылочная кора, Д - гиппокамп, Е - гипоталамус, Ж - медиальный таламус, З - ретикулярная формация; нижняя кривая - отметка условного сигнала (звонка) оборонительного рефлекса и времени (с) (по П.К. Анохину)
В то же время уретановый наркоз избирательно подавляет ЭЭГ-активацию, возникающую при ориентировочном рефлексе.
В ЭЭГ у кошки, получившей уретановый наркоз, возбуждение, вызванное болевым раздражением, выражается не в появлении тета-ритма, а в ЭЭГ-десинхронизации, локализованной в задних отделах коры. А возбуждение, вызванное голодом, - появлением десинхронизации, но только в передних отделах коры. Инъекция аминазина устраняет болевую десинхронизацию и не влияет на ЭЭГ-десинхронизацию от голода у кошки, получившей уретан. Последнюю десинхронизацию можно было устранить, лишь насытив голодное животное, введя в полость рта или в желудок молоко или сделав инъекцию глюкозы. Такой же эффект можно вызвать коагуляцией латерального гипоталамуса (центра голода) или тормозным воздействием на него через анод. Отключение латерального гипоталамуса через анодизацию устраняет ЭЭГ-десинхро-низацию только в передних отделах коры и не влияет на десинхронизацию оборонительной природы, которая в результате длительного голодания обычно развивается в теменных и затылочных отделах коры.
Выделенные типы ЭЭГ-активации отражают особенности и специфику мотивационных состояний. Они были получены опытным путем на животных, которые были сильно ограничены в движениях и не могли осуществлять целенаправленное поведение. В условиях же свободного передвижения при реализации пищедобывательного поведения или избегания наказания ЭЭГ-картина существенно меняется, так как в ней начинает отражаться преимущественно поис-ковое поведение. Лишь в условиях свободного передвижения мотивационное состояние (1 фаза) может перейти в целенаправленное поведение (2 фаза). С переходом от 1 ко 2 фазе мотивации картина электрической активности мозга существенно изменяется.
Интересны исследования К.В. Шулейкиной, которая изучала электроэнцефалографические коррелянты пищевого поведения у котенка. ЭЭГ-выражением пищевой потребности является появление в ЭЭГ высокочастотных колебаний с частотой 30-60 в 1с, во время же поиска пищи в ЭЭГ доминируют высокоамплитудные медленные веретена с частотой 3-6, 6-8 в 1с. В момент схватывания соска эти веретена становятся особенно регулярными. А с началом сосания наблюдается уменьшение их амплитуды.
Интенсивная и разнообразная двигательная активность во время поисковой фазы у самых различных животных обычно сопровождается усилением тета-активности. По данным ряда исследователей, отдельные полосы тета-ритма связаны с различными фрагментами двигательного поведения. Дж. Грей выделяет три частотные зоны в тета-ритме. Ритм с частотой 8-10 в 1с он наблюдал во время движения крысы к цели, а среднечастотный тета-ритм (от 6 до 7,5 в 1с) – при замирании животного в ситуации вынужденного ожидания перед движением к цели. Низкочастотный тета-ритм (5-6 в 1с), по его данным, возникает во время завершающих консуматорных движений (поглощения пищи и т.д.). Низкочастотный тета-ритм рассматривается как готовность к удовлетворению биологической потребности.
Таким образом, мотивационное состояние и целенаправленное поведение как две фазы мотивации представлены различными типами электрической активности мозга.
Обе фазы мотивации хорошо вписываются в структуру поведенческого акта П.К. Анохина. Они связаны с различными его стадиями: стадией афферентного синтеза, где ведущая роль принадлежит мотивационному возбуждению, и стадией формирования акцептора результатов действия.
Дата добавления: 2015-09-18 | Просмотры: 1107 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|