Строение и функции зрительного анализатора. Нарушения зрения
Периферическим отделом зрительной сенсорной системой является глаз, который расположен в углублении черепа – глазнице.
Сзади и с боков он защищен от внешних воздействий костными стенками глазницы, а спереди – веками. Он состоит из глазного яблока и вспомогательных структур: слезных желез, ресничной мышцы, кровеносных сосудов и нервов. Слезная железа выделяет жидкость, предохраняющую глаз от высыхания. Равномерному распределению слезной жидкости по поверхности глаза способствует мигание век.
Глазное яблоко ограниченно тремя оболочками – наружной, средней и внутренней. Наружная оболочка глаза – склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм, в передней части она переходит в прозрачную роговицу.
Под склерой расположена сосудистая оболочка глаза, толщина которой не превышает 0,2–0,4 мм. В ней содержится большое количество кровеносных сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилиарное) тело и радужную оболочку (радужку).
В центре радужки располагается зрачок, его диаметр изменяется, от чего в глаз может попадать большее или меньшее количество света. Просвет зрачка регулируется мышцей, находящейся в радужке.
В радужной оболочке содержится особое красящее вещество – меланин. От количества этого пигмента цвет радужки может колебаться от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. Если пигмент отсутствует (таких людей называют альбиносами), лучи света могут проникать в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок, зрение понижено.
В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну.
Хрусталик – прозрачное, эластичное образование, имеет форму двояковыпуклой линзы. Он покрыт прозрачной сумкой, по всему его краю к ресничному телу тянутся тонкие, но очень упругие волокна. Они сильно натянуты и держат хрусталик в растянутом состоянии.
В передней и задней камере глаза находиться прозрачная жидкость, которая снабжает питательными веществами роговицу и хрусталик. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой – стекловидным телом. Оптическая система глаза представлена роговицей, камерами глаза, хрусталиком и стекловидным телом. Каждая из этих сред имеет свой показатель оптической силы.
Оптическая сила выражается в диоптриях. Одна диоптрия (дптр) – это оптическая сила линзы с фокусным расстоянием 1 м. Оптическая сила системы глаза в целом – 59 дптр при рассматривании далеких предметов и 70,5 дптр при рассматривании близких предметов.
Глаз – чрезвычайно сложная оптическая система, которую можно сравнить с фотоаппаратом, в котором объективом выступают все части глаза, а фотопленкой – сетчатка. На сетчатке фокусируются лучи света, давая уменьшенное и перевернутое изображение. Фокусировка происходит за счет изменение кривизны хрусталика: при рассматривании близкого предмета он становится выпуклым, а при рассматривании удаленного – более плоским.
Световоспринимающий аппарат глаза. Внутренняя поверхность глаза выстлана тонкой (0,2–0,3 мм), весьма сложной по строению оболочкой – сетчаткой, или ретиной, на которой находятся светочувствительные клетки – палочки и колбочки, или рецепторы (рис. 5.5).
Колбочки сосредоточены в основном в центральной области сетчатки – в желтом пятне. По мере удаления от центра число колбочек уменьшается, а палочек – возрастает. На периферии сетчатки имеются только палочки. У взрослого человека насчитывается 6–7 млн. палочек, которые обеспечивают восприятие дневного и сумеречного света. Колбочки являются рецепторами цветного зрения, палочки – черно-белого.
Местом наилучшего видения является желтое пятно, и особенно его центральная ямка. Такое зрение называют центральным. Остальные части сетчатки принимают участие в боковом, или периферическом, зрении. Центральное зрение обеспечивает возможность рассматривать мелкие детали предметов, а периферическое позволяет ориентироваться в пространстве.
В палочках содержится особое вещество пурпурного цвета – зрительный пурпур, или родопсин, в колбочках – вещество фиолетового цвета – йодопсин, который, в отличие от родопсина, в красном свете выцветает.
Возбуждение палочек и колбочек вызывает появление нервных импульсов в связанных с ними волокнах зрительного нерва. Колбочки менее возбудимы, поэтому, если слабый свет попадает в центральную ямку, где находятся колбочки, а палочек нет, мы его видим очень плохо или не видим вовсе. Зато слабый свет хорошо виден, когда он попадает на боковые поверхности сетчатки. Таким образом, при ярком освещении функционируют в основном колбочки, при слабом освещении – палочки.
В сумерках при слабом освещении мы видим за счет зрительного пурпура. Распад зрительного пурпура под действием света вызывает возникновение импульсов возбуждения в окончаниях зрительного нерва и является начальным моментом зрительной афферентации.
Зрительный пурпур на свету распадается на белок опсин и пигмент ретинен – производное витамина А. В темноте витамин А превращается в ретинен, который соединяется с опсином и образует родопсин, т. е. зрительный пурпур восстанавливается. В темноте сетчатка содержит мало витамина А, а на свету обнаруживается значительное его количество. Следовательно, витамин А – источник зрительного пурпура.
Недостаток в пище витамина А сильно нарушает образование зрительного пурпура, что вызывает резкое ухудшение сумеречного зрения, так называемую куриную слепоту (гемералопию).
Рецепторы сетчатки передают сигналы по волокнам зрительного нерва, в котором насчитывают до 1 млн. нервных волокон, только один раз, в момент появления нового предмета. Затем добавляются сигналы о наступающих изменениях в изображении предмета по сравнению с его прежним изображением и о его исчезновении. Зрительные ощущения возникают только в момент фиксации взгляда в ряде последовательных точек предмета.
Проводниковый отдел зрительной сенсорной системы – это зрительный нерв, ядра верхних бугров четверохолмия среднего мозга, ядра наружного коленчатого тела промежуточного мозга.
Центральный отдел зрительного анализатора расположен в затылочной доле.
Возрастные особенности. Элементы сетчатки начинают развиваться на 6–10-й неделе внутриутробного развития, но окончательное ее морфологическое созревание происходит лишь к 10–12-ти годам. В процессе развития существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Колбочки, ответственные за цветовое зрение, еще не зрелые, и их количество невелико. И хотя функции цветоощущения у новорожденных есть, но полноценное включение колбочек в работу происходит только к концу 3-го года жизни. По мере созревания колбочек дети начинают различать сначала желтый, потом зеленый, а затем красный цвета (уже с 3-х месяцев удавалось выработать условные рефлексы на эти цвета); распознавание цветов в более раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. Полностью различать цвета дети начинают с конца 3-го года жизни. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30-ти годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка.
Миелинизация проводящих путей начинается лишь на 8–9-м месяце внутриутробного развития, и заканчивается лишь к 3–4-му году жизни.
Корковый отдел зрительного анализатора в основном формируется на 6–7-м месяце внутриутробной жизни, но окончательно зрительная кора созревает к 7-летнему возрасту.
Что касается дорецепторных структур, то у новорожденного глазное яблоко составляет 16 мм, а его масса 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно – до 9–12-ти лет. У взрослых диаметр глазного яблока составляет около 24 мм, а вес 8,0 г.
У новорожденных форма глазного яблока более шаровидная, чем у взрослых, в результате в 80–94% случаев у них отмечается дальнозоркая рефракция (см. рис. 5.6, с. 128). Повышенная растяжимость и эластичность склеры у детей способствует легкой деформации глазного яблока, что важно в формировании рефракции глаза. Так, если ребенок играет, рисует или читает, низко наклонив голову, в силу давления жидкости на переднюю стенку, глазное яблоко удлиняется и развивается близорукость (рис. 5.6).
В первые годы жизни радужка содержит мало пигментов и имеет голубовато-сероватый оттенок, а окончательное формирование ее окраски завершается только к 10–12-ти годам.
Зрачок у новорожденных узкий. В возрасте 6–8-ми лет зрачки широкие из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, что повышает риск солнечных ожогов сетчатки. В 8–10 лет зрачок вновь становится узким, а к 12–13-ти годам быстрота и интенсивность зрачковой реакции на свет такие же, как и у взрослого.
У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, и его преломляющая способность выше. Это делает возможным четкое видение предмета при большем приближении его к глазу, чем у взрослого. В свою очередь, привычка рассматривать предметы на малом расстоянии может приводить к развитию косоглазия.
Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет, или, образно говоря, «механизм точной настройки», формируется в возрасте от 5-ти дней до 3–5-ти месяцев. Функциональное созревание зрительных зон коры головного мозга, по некоторым данным, происходит уже к рождению ребенка, по другим – несколько позже.
Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и в последнюю очередь – цвет.
Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение.
Стереоскопическое зрение к 17–22-м годам достигает своего оптимального уровня, причем с 6-ти лет у девочек острота стереоскопического зрения выше, чем у мальчиков.
В 7–8 лет глазомер у детей значительно лучше, чем у дошкольников, но хуже, чем у взрослых; половых различий не имеет. В дальнейшем у мальчиков линейный глазомер становиться лучше, чем у девочек.
Интенсивно увеличивается и поле зрение у детей, к 7-ми годам его размер составляет приблизительно 80% от размера поля зрения взрослого человека. В развитии поля зрения наблюдаются половые особенности.
Нарушения зрения. Коррекция зрения. Важное значение в процессе обучения и воспитания детей с дефектами органов чувств имеет высокая пластичность нервной системы, позволяющая компенсировать выпавшие функции за счет оставшихся. Известно, что у слепоглухих детей повышена чувствительность вкусового и обонятельного анализаторов. С помощью обоняния они могут хорошо ориентироваться на местности и узнавать родственников и знакомых. Чем более выражена степень поражения органов чувств ребенка, тем более трудной становится и учебно-воспитательная работа с ним.
Подавляющая часть всей информации из окружающего мира (примерно 90%) поступает в наш мозг через зрительные и слуховые каналы, поэтому для нормального физического и психического развития детей и подростков особое значение имеют органы зрения и слуха.
Среди дефектов зрения наиболее часто встречаются различные формы нарушения рефракции оптической системы глаза или нарушения нормальной длины глазного яблока. В результате лучи, идущие от предмета, преломляются не на сетчатке. При слабой рефракции глаза вследствие нарушения функций хрусталика – его уплощения, или при укорочении глазного яблока, изображение предмета оказывается за сетчаткой. Люди с такими нарушениями зрения плохо видят близкие предметы; такой дефект называют дальнозоркостью.
При усилении физической рефракции глаза, например, из-за повышения кривизны хрусталика, или удлинении глазного яблока, изображение предмета фокусируется впереди сетчатки, что нарушает восприятия удаленных предметов. Этот дефект зрения называют близорукостью.
При развитии близорукости школьник плохо видит написанное на классной доске, просит пересадить его на первые парты. При чтении он приближает книгу к глазам, сильно склоняет голову во время письма, в кино или в театре стремится занять место поближе к экрану или сцене. При рассматривании предмета ребенок прищуривает глаза. Что бы сделать изображение на сетчатке более четким, он чрезмерно приближает рассматриваемый предмет к глазам, что вызывает значительную нагрузку на мышечный аппарат глаза. Нередко мышцы не справляются с такой работой, и один глаз отклоняется в сторону виска – возникает косоглазие. Близорукость может развиваться при таких заболеваниях, как рахит, туберкулез, ревматизм.
Частичное нарушение цветового зрения получило название дальтонизма (по имени английского химика Дальтона, у которого впервые был обнаружен этот дефект). Дальтоники обычно не различают красный и зеленый цвета (они им кажутся серыми разных оттенков). Около 4–5% всех мужчин страдают дальтонизмом. У женщин он встречается реже (до 0,5%). Для обнаружения дальтонизма пользуются специальными цветовыми таблицами.
Профилактика нарушений зрения основывается на создании оптимальных условий для работы органа зрения. Зрительное утомление приводит к резкому снижению работоспособности детей, что отражается на их общем состоянии. Своевременная смена видов деятельности, изменение обстановки, в которой проводятся учебные занятия, способствуют повышению работоспособности.
Большое значение имеет правильный режим труда и отдыха, школьная мебель, отвечающая физиологическим особенностям учащихся, достаточное освещение рабочего места и др. во время чтения каждые 40-60 мин необходимо делать перерыв на 10-15 мин, чтобы дать отдохнуть глазам; для снятия напряжения аппарата аккомодации детям рекомендуют посмотреть вдаль.
Кроме того, важная роль в охране зрения и его функции принадлежит защитному аппарату глаза (веки, ресницы), который требуют бережного ухода, соблюдения гигиенических требований и своевременного лечения. Неправильное использование косметических средств может привести к конъюнктивитам, блефаритам и другим заболеваниям органов зрения.
Особое внимание следует обратить на организацию работы с компьютерами, а также просмотр телевизионных передач. При подозрении на нарушение зрения необходима консультация врача – офтальмолога.
До 5-ти лет у детей преобладает гиперметропия (дальнозоркость). При данном дефекте помогают очки с собирательными двояковыпуклыми стеклами (придающими проходящим через них лучам сходящееся направление), которые улучшают остроту зрения и снижают излишнее напряжение аккомодации.
В дальнейшем в связи с нагрузкой при обучении частота гиперметрии снижается, а частота эмметропии (нормальной рефракции) и миопии (близорукости) увеличивается. К окончанию школы по сравнению с начальными классами распространенность близорукости возрастает в 5 раз.
Формированию и прогрессированию близорукости способствует дефицит света. В условиях Заполярья, при постоянном искусственном освещении в период полярной ночи, в тех школах, где уровень освещенности на рабочих местах был в 5–10 раз ниже гигиенических нормативов, у детей и подростков близорукость развивалась чаще.
Острота зрения и устойчивость ясного видения у учащихся существенно снижаются к окончанию уроков, и это снижение тем резче, чем ниже уровень освещенности. С повышением уровня освещенности у детей и подростков увеличивается быстрота различения зрительных стимулов, возрастает скорость чтения, улучшается качество работы. При освещенности рабочих мест 400 лк без ошибок было выполнено 74% работ, при освещенности 100 лк и 50 лк – соответственно 47 и 37%.
При хорошем освещении у нормально слышащих детей у подростков обостряется острота слуха, что также благоприятствует работоспособности, положительно сказывается на качестве работы. Так, если диктанты проводились при уровне освещенности 150 лк, число пропущенных или написанных с ошибками слов было на 47% меньше, чем в аналогичных диктантах, проведенных при освещенности 35 лк.
На развитие близорукости оказывает влияние учебная нагрузка, непосредственно связанная с необходимостью рассматривать объекты на близком расстоянии, ее продолжительность в течение дня.
Следует также знать, что у учащихся, мало бывающих или совсем не бывающих на воздухе в околополуденное время, когда интенсивность ультрафиолетовой радиации максимальна, нарушается фосфорно-кальциевый обмен. Это приводит к уменьшению тонуса глазных мышц, что при высокой зрительной нагрузке и недостаточной освещенности способствует развитию близорукости и ее прогрессированию.
Больными считаются дети, у которых миопическая рефракция составляет 3,25 дптр и выше, а острота зрения с коррекцией – 0,5–0,9. Таким учащимся рекомендованы занятия физической культурой только по специальной программе. Им также противопоказано выполнение тяжелой физической работы, длительное пребывание в согнутом положении с наклоненной головой.
С целью профилактики близорукости необходимы ежегодные медицинские осмотры учащихся врачом – окулистом. При миотопии слабой и средней степени, гиперметропии, астигматизме учащиеся осматриваются окулистом один раз в год, а в случаях высокой степени миопии (более 6,0 дптр) – два раза в год.
При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, которые превращают параллельные лучи в расходящиеся. Близорукость в большинстве случаев врожденная, но она может увеличиваться в школьном возрасте от младших классов к старшим. В тяжелых случаях близорукость сопровождается изменениями сетчатки, что ведет к падению зрения и даже отслойке сетчатки. Поэтому детям, страдающим близорукостью, необходимо строго выполнять предписания окулиста. Своевременное ношение очков школьниками является обязательным.
Дата добавления: 2015-11-02 | Просмотры: 832 | Нарушение авторских прав
|