АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Механизмы фагоцитоза.

Лейкоциты, выходящие из сосудистого русла, выполняют различные функции (защитная, регулирующая). Наибольшее значение при остром воспалении имеет защитная функция, которая преимущественно обеспечивается нейтрофильными лейкоцитами и моноцитами-макрофагами. Защитная функция этих клеток связана с их способностью к фагоцитозу. Фагоцитоз — одно из самых блестящих открытий патофизиологии XIX века. И.И.Мечников описал фагоцитоз в 1883 году, как общебиологическое явление в жизнедеятельности одноклеточных и многоклеточных организмов, состоящее в поглощении клетками других клеток и твердых частиц. В настоящее время под фагоцитозом понимают захват клеткой путем рецепторного эндоцитоза при участии микрофиламентов объектов с диаметром более 1 мкм (Ц.Кон, 1983).

Фагоцито́з (Фаго — пожирать и цитос - клетка) — процесс захвата клеткой путем рецепторного эндоцитоза частиц (в том числе и микроорганизмов). Максимальная активность фагоцитов наблюдается в отношении частиц диаметром более 1 мкм. Однако, возможен фагоцитоз и более мелких частиц, диаметром до 100 нм. В роли фагоцитов выступают гранулоциты крови, преимущественно нейтрофилы, а также макрофаги (тканевые макрофаги и моноциты крови). Фагоцитоз протекает в несколько стадий: 1 – приближение (хемотаксис), 2- прилипание к объекту фагоцитоза (аттракция, адгезия), 3 – погружение объекта фагоцитоза (рецепторный эндцитоз), 4 – умерщвление (киллинг), 5 – внутриклеточное переваривание.

1. приближение лейкоцита к объекту фагоцитоза. Эта стадия определяется хемоаттрактантами, которые образуются в большом количестве в очаге воспаления и функциональной активностью лейкоцитов.

2. прилипание лейкоцита к объекту фагоцитоза. Прилипание лейкоцита – рецептор-опосредованный процесс. На мембране лейкоцитов можно обнаружить рецепторы ко многим антигенам микроорганизмов, которые относятся к рецепторам «первичного иммунитета». Однако, такой механизм связывания лейкоцита с антигеном ограничен и не позволяет осуществить полноценный иммунный ответ. Поэтому, в большинстве случаев прилипание лейкоцита к объекту фагоцитоза осуществляется с помощью универсальных «посредников», в качестве которых выступают иммуноглобулины (преимущественно IgG) и система комплемента (C3b).

Процесс связывания объекта фагоцитоза с такими белками для последующего фагоцитоза называется опсонизацией, а сами белки, выполняющие эту функцию – опсонинами. После опсонизации объекта фагоцитоза лейкоцит взаимодействует не с антигеном микроорганизма, а иммуноглобулином через соответствующий рецептор к Fc-фрагменту IgG или через рецептор к С3b. Наиболее активны как опсонины иммуноглобулины (G1 и G3, в меньшей степени Μ и Ε). Они распознаются Fсγ- или иными Fc-pецепторами. Фактор комплемента С3b и его нестабильная форма iC3b (как при прямой активации объектами фагоцитоза, так и при активации иммуноглобулинами и иммунными комплексами) также оказывают опсониновый эффект через рецепторы CR1-CR3. Опсонизация в несколько раз увеличивает активность прилипания.

С-реактивный белок, фактически, также является ко-опсонином, так как связывает С-белок пневмококков и других микробов и опосредует прикрепление к ним факторов комплемента и фагоцитов. Сходным действием в отношении некоторых бактерий обладает лизоцим.

Иногда процесс опсонизации может оказывать отрицательное воздействие. Некоторые микроорганизмы (например, золотистый стафилококк) и вирусы (например, вирус герпеса) в процессе эволюции выработали приспособления, позволяющие ускользать от опсонизации. Это белки-аналоги Fсγ-рецепторов. Они блокируют антитела-опсонины и не дают фагоцитам прилипать к обладающему ими объекту. Патогены, обладающие способностью связывать антитела не только по Fab, но и по Fc-фрагменту, способны провоцировать образование крупных комплексов, содержащих несколько молекул иммуноглобулина и микробных тел (вирусных частиц). Стафилококковый А-протеин даже используется как лиганд для выделения иммуноглобулинов G методом аффинной хроматографии.

Исходно в организме имеется недостаточное количество иммуноглобулинов, способных связаться с конкретным антигеном микроорганизма, поэтому максимальная активность фагоцитоза невозможна без образования достаточного количества специфических к данному антигену иммуноглобулинов. После распознавания антигена и выработки антиген-специфичных иммуноглобулинов (процесс опсонизации усиливается, чем достигается уничтожение микроорганизма, в том числе с помощью фагоцитоза.

Прилипание фагоцитов к объектам фагоцитоза вызывает комплекс метаболических изменений, которые известны как «активация фагоцитов». При активации в фагоците происходит метаболический взрыв. При этом клетка увеличивается, в ней резко усиливается интенсивность реакций пентозного пути и гликолиза, распадается гликоген. Происходит накопление НАДФН и ГТФ, которые затем будут обеспечивать энергетически синтез АКР и работу элементов цитоскелета. Удельная теплопродукция лейкоцитов возрастает в 4-5 раз. Активированные фагоциты увеличивают свою цитотоксическую, фагоцитарную и бактерицидную активность. В них начинается выработка активных кислородных радикалов. В ходе активации лейкопептидаза (лейкокининогеназа) фагоцитов действует на иммуноглобулиновые опсонины и освобождает из Сγ2-домена их Fc-фрагмента пептиды - лейкокинины. Наиболее известными лейкокининами являются тафтсин (названный так первооткрывателями из Университета Тафтса) и близкий к нему ригин, получивший свое название в честь столицы Латвии, где он был выделен. Тафтсин и другие лейкокинины стимулируют активацию фагоцитов и тромбоцитов и усиливают фагоцитоз, способствуют пролиферации и функциям Т-лимфоцитов и даже усиливают стимуляцию периферических эндокринных желез тропными гормонами гипофиза. Значительные количества тафтсина освобождаются в системный кровоток макрофагами селезенки, в результате чего он рассматривается некоторыми исследователями, как ее гормон.

3. Стадия погружения объекта фагоцитоза завершается образованием фагосомы. Этот процесс энергозависимый, связан с работой сократительных белков фагоцита и происходит после взаимодействия опсонизированного микроорганизма с соответствующими рецепторами на мембране фагоцита. В результате погружения, объект оказывается в цитоплазме фагоцита, полностью окруженный фагосомой, созданной путем инвагинации и замыкания участка клеточной мембраны.

4. Стадия переваривания. При участии микрофиламентов цитоскелета и особых белков-фагозогенов, фагосома сливается с лизосомами и специфическими гранулами фагоцита (внутренняя дегрануляция), формируя фаголизосому, где и происходит завершающая стадия фагоцитоза. Все эти процессы зависят от кальция, протеинкиназы С и липидных внутриклеточных посредников.

Одновременно с этим происходит разрушение (киллинг) микроорганизма с помощью разнообразных механизмов. Они подразделяются на кислород-зависимые и кислород-независимые.

Главную роль здесь играют кислород-зависимые цитотоксические механизмы фагоцитов (галогенизация и перекисное окисление компонентов захваченных объектов с участием гипохлорита, перекиси водорода, синглетного кислорода, гидроксильных радикалов, супероксидного аниона, оксийодидов и оксида азота).

Некоторые микробы, такие, как возбудитель проказы, избегают завершающей стадии фагоцитоза, разрушая фаголизосому и выходя из нее, а многие вырабатывают, подобно самим макрофагам, значительные количества каталазы, расщепляющей перекись водорода (Pseudomonas cepacia, Staphylococus aureus, Chromobacterium violaceum, Aspergillus). Но, и в этих условиях они подвергаются действию кислород-независимых защитных механизмов.

К кислороднезависимым механизмам относится воздействие таких веществ, как лизоцим, эластаза, коллагеназа, катепсины, лактоферрин, катионные белки (дефенсины, протегрины). После гибели микроорганизма происходит окончательное переваривание его структур ферментами фагоцита. Фагоцитоз, который завершился уничтожением микроорганизма и перевариванием объекта фагоцитоза называется завершенным. Фагоцитоз, при котором микроорганизм не погибает, и нередко продолжает жить внутри фагоцита, называется незавершенным.

Многие факультативные и облигатные внутриклеточные паразиты не только сохраняют жизнеспособность внутри клеток, но и способны размножаться.

Персистирование патогенов опосредуют следующиеосновные механизма:

- Блокада фагосомо-лизосомального слияния. Этот феномен обнаружен у вирусов (например, у вируса гриппа), бактерий (например, у микобактерий) и простейших (например, у токсоплазм).

- Резистентность к лизосомальным ферментам (например, гонококки и стафилококки).

- Способность патогенных микроорганизмов быстро покидать фагосомы после поглощения и длительно пребывать в цитоплазме (например, риккетсии).

-Способность вырабатывать каталазу, разрушающую перекись водорода (стафилококк, аспергиллы), что нарушает разрушение микроорганизмов и антигенпредставляющую функцию фагоцита.

К незавершенному фагоцитозу также может привести фагоцитарная недостаточность.

По механизму развития фагоцитарная недостаточность делится на три основные формы:

- Лейкопеническая - развивается вследствие подавления процессов пролиферации и созревания моноцитов (ионизирующее излучение, ряд токсинов, цитостатики и др.) либо в результате наследственной блокады деления и дифференцировки, например миелоидной стволовой клетки.

- Дисфункциональная - характеризуется расстройствами различных этапов процессов фагоцитоза и презентации антигена (подвижности фагоцитов, их адгезивных свойств, поглощения объекта фагоцитоза, переработки его и представления антигена лимфоцитам).

- Дисрегуляторная - развивается вследствие нарушения регуляции различных этапов фагоцитарной реакции биологически активными веществами (нейромедиаторами, гормонами, простагландинами, биогенными аминами, пептидами и др.).

Нарушения на различных этапах фагоцитоза приводят к развитию многочисленных патологических состояний. В частности к ним относят такие генетически обусловленные заболевания, как дефект адгезии лейкоцитов (LAD-синдром), хроническая гранулематозная болезнь, гипер-IgE-синдром (синдром Иова), нейтропения (синдром Костманна), синдром Чедиака-Хигаси. Кроме того, нарушения фагоцитарной функции лейкоцитов наблюдаются при сахарном диабете, почечной недостаточности, циррозе печени и ряде других заболеваний.

ПРОЛИФЕРАЦИЯ

Пролиферация – процесс размножения клеток в очаге повреждения, направленный на восстановление целостности тканей. Процесс восстановления структуры поврежденной ткани начинается через несколько часов после повреждения. Однако, цель пролиферации может быть достигнута только при условии, что дальнейшего повреждения тканей не происходит, в противном случае новые клетки будут разрушаться под действием повреждающих факторов. Таким образом, процесс пролиферации и восстановления поврежденной ткани становится значимым лишь к моменту, когда основные процессы первичного и вторичного повреждения завершатся. главным условием успешного хода репаративного процесса при воспалении служит затухание острых альтеративных и экссудативных изменений. Это достижимо лишь при[320] условии полной деструкции или устранения флогогенного агента. Если флогогенный агент полностью не устранен, воспаление может стать хроническим (см. ниже).

Второе условие перехода к репаративным процессам требует действия противовоспалительных медиаторов. К противовоспалительным медиаторам относятся ингибиторы экссудации и литических ферментов, инактиваторы провоспалительных сигнальных молекул, антиагреганты, антикоагулянты и компоненты системы фибринолиза.

Репаративные процессы, разворачивающиеся по мере затухания острой фазы воспаления, сводятся к регенерации и фиброплазии.Регенерация — это замена утраченных клеток клетками того же типа. Если полное количественное восстановление паренхиматозных клеток невозможно, например, при потере клеточных элементов» неспособных к делению, или при недостаточной регенерации паренхимы, то происходит восполнение дефекта паренхимы соединительной тканью или фиброплазия. Формируется молодая, богатая регенерирующими, высокопроницаемыми сосудами грануляционная ткань, затем переходящая в соединительную ткань, оставляющую рубец. При репаративных процессах в очаге воспаления регенерация клеток и фиброплазия достигаются как через усиление пролиферации, так и путем ограничения апоптоза клеток.

Стимуляторами пролиферации и ограничителями апоптоза выступают, главным образом, медиаторы воспаления, которые объединяют в сборную функциональную группу факторов роста, происходящих из макрофагов, лимфоцитов, тромбоцитов, фибробластов и других клеток.

Для самосборки тканей и их роста существенное значение имеют также распознающие адгезивные гликопротеиды межклеточного вещества. В отличие от факторов роста, они фиксированы в тканях. Эти компоненты производятся макрофагами и фибробластами.

Определенное участие в регуляции репаративных процессов принимают гликопротеидные тканеспецифические ингибиторы роста, получившие название кейлоны (от греческого «халао» -тормозить ход корабля), вырабатываемые эпидермисом, нейтрофилами и некоторыми другими клетками (эндотелий, эритроциты, печень, мезенхимальные клетки (в частности фибробласты). Наряду с кейлонами существует сигналы обратного действия — антикейлоны (мезенхимальный, фибробластный, гранулоцитарный). Антикейлоны, впервые открытые у гранулоцитов, рассматриваются, как вытеснители или блокаторы кейлонов, а их баланс, нарушаемый в пользу антикейлонов при гибели клеток — как один из возможных регуляторов пролиферации в очагах воспаления.

Ростостимулирующим действим на фибробласты, остеобласты, хондроциты, мышечную ткань и паренхиматозные клетки внутренних органов обладает гипофизарный соматотропин. Помимо прямого стимулирующего эффекта на пролиферацию клеток и анаболизм аминокислот, соматотропин опосредует свое действие через систему синтезируемых под его влиянием инсулиноподобных факторов роста — соматомединов и инсулина.

Рост и регенерация стимулируются также тиреоидными гормонами. Стероидные гормонымогут оказывать как пролиферативные, так и апоптогенные эффекты во многих тканях, действуя на цис-регуляторные элементы хроматина клеток-мишеней после проникновения в комплексе с цитоплазматическими рецепторами в их ядра. Классическими экспериментами Г.Селье была установлена стимуляция репаративных процессов при повреждении минералокортикоидами и гормоном роста и их торможение под действием глюкокортикоидов.

В процессе пролиферации выделяют 3 этапа: 1) очищение ткани от поврежденных клеточных элементов, микроорганизмов и других чужеродных элементов 2) стимуляция роста сосудов в поврежденной ткани 3) восстановление целостности ткани.

Очищение ткани от поврежденных клеток и микроорганизмов осуществляют нейтрофильные лейкоциты и макрофаги, которые являются основными клетками острого воспаления. Нейтрофильные лейкоциты окружают очаг воспаления, создавая барьер между зоной повреждения и здоровой тканью. Схожую функцию выполняют венозный застой и стаз, которые препятствуют распространению инфекции по сосудам.

Для неоангиогенеза (роста сосудов в очаге повреждения) большое значение имеют физические факторы: артериальное давление (повышение которого стимулирует коллагенообразование) парциальное напряжение кислорода, утрата взаимного контактного ингибирования эндотелиоцитами. Но главную роль играют факторы роста, которые вырабатываются различными клетками, преимущественно макрофагами и эндотелиальными клетками. Важнейшие факторы, стимулирующие ангиогенез, это:

•Фактор роста фибробластов (FGF);

•Сосудистый эндотелиальный фактор роста (VEGF);

•Трансформирующие факторы роста (α и β);

•Эпидермальный фактор роста.

 

Под влиянием факторов роста из делящихся эндотелиоцитов происходит формирование трубки будущего капилляра. Эндотелиальные клетки в таких новых капиллярах функционально несостоятельны и эти сосуды отличаются очень высокой проницаемостью. Затем эндотелиальные клетки «созревают», происходит формирование базальной мембраны, и новые сосуды приобретают свойства нормальных капилляров.

Хемотаксис, активация и пролиферация фибробластов, стимуляция синтеза ими компонентов межклеточного матрикса и подавление активности ответственных за деградацию матрикса ферментов-металлопротеиназ достигаются под воздействием:

•Факторов роста фибробластов;

•Тромбоцитарного фактора роста;

•Трансформирующего фактора роста β;

•Фиброгенных цитокинов — кахексина и интерлейкина-1;

•Кининов;

•Тромбина.

Гладкомышечные клетки также отвечают пролиферативно-синтетической активацией на:

•Тромбоцитарный фактор роста;

•Основной фактор роста фибробластов;

•Интерлейкин-1;

•Кахексин.

В то же время, ряд сигналов ингибируют рост гладкомышечных клеток, включая:

•Гепарансульфат;

Оксид азота;

•γ-интерферон;

•Трансформирующий фактор роста β. Наиболее активным и разносторонним медиатором фибро- и ангиогенеза, по-видимому, следует признать трансформирующий фактор роста β.

Восстановление целостности ткани происходит за счет роста соединительной ткани и эпителиальной ткани, которые идут одновременно с ростом сосудов.

По своей пролиферативной активности ткани делятся на 3 типа: с высокой пролиферативной активностью (костный мозг, эпителий кожи, желудочно-кишечного тракта, соединительная ткань); с возможной пролиферативной активностью в условиях повреждения (ткань печени, почки); непролиферирующие ткани (нервная, мышечная).

Восстановление дефекта ткани происходит преимущественно за счет основных структурных клеточных элементов, например, эпителиальных клеток кожи или кишечника. Параллельно происходит активный рост соединительной ткани, поэтому при значительном объеме повреждения пролиферация завершается восстановлением целостности ткани со значительным изменением ее состава; как правило, с избыточным количеством соединительной ткани. Основой пролиферации являются молодые «камбиальные» клетки, которые присутствуют в большинстве пролиферирующих тканей.

Однако, процессы пролиферации имеют не только механизмы стимулирующей регуляции, но и тормозной регуляции, что также очень важно. Так, фибробласты, участвующие в регенерации ткани, постепенно утрачивают свою пролиферативную активность, что предотвращает их чрезмерную пролиферацию. При этом происходит угнетение экспрессии факторов роста, рецепторов к факторам роста и другие процессы. Одним из механизмов такого угнетения пролиферативной активности достигается с помощью т.н. «контактного торможения», когда при достижении определенной плотности клеточных контактов начинается торможение пролиферативной активности на уровне регуляции генома клетки. Кроме того, меняется микроокружение клетки и условия метаболизма.

При нарушении механизмов регуляции пролиферации, а именно при увеличении пролиферативной активности фибробластов и недостаточной тормозной регуляции возможна их избыточная пролиферация, что проявляется в виде гипертрофических и келоидных рубцов. Появление таких рубцов отчасти имеет генетическую предрасположенность, связанную с некоторыми генами по системе HLA (HLA BW16, HLA BW21). Доказано, что фибробласты в гипертрофических и келоидных рубцах более активны, вырабатывают больше коллагена, фибронектина и протеогликанов, а также имеют нарушенную чувствительность к механизмам регуляции.

При недостаточной активности пролиферативных процессов на фоне хронической гипоксии ткани, например, при патологии микрососудов при диабетической микроангиопатии или при хронической венозной недостаточности, процессы пролиферации могут отставать даже от скорости естественной смерти старых клеток (апоптоза) (см. главу патофизиология тканевого роста). Такое несоответствие между естественной убылью клеток и их восстановлением может привести к образованию язвы, т.е дефекта ткани.

 


Дата добавления: 2015-11-28 | Просмотры: 1170 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.01 сек.)