АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Центр тяжести твёрдого тела

Прочитайте:
  1. V. Выпишите рецепты в дневник для лечения больных на ФАПе с диагнозами: «Сальмонеллез средней степени тяжести».
  2. V. Фінансово-господарська діяльність і матеріально-технічна база навчально-реабілітаційних центрів
  3. VI. Управління навчально-реабілітаційним центром та контроль за його діяльністю
  4. А) Переливание тробоконцентрата, назначение антибиотиков.
  5. А) Переливание тробоконцентрата, назначение антибиотиков.
  6. Анатомо-физиологические особенности (АФО) центральной нервной системы недоношенных детей.
  7. Б. Концентрация на слове
  8. Баланс Центрального банка Баланс коммерческих банков Баланс «публики»
  9. Баланс Центрального банка Баланс коммерческих банков Баланс «публики»
  10. БУДОВА І ФУНКЦІЇ ЦЕНТРАЛЬНОЇ НЕРВОВОЇ СИСТЕМИ. СПИННИЙ МОЗОК

 

 

В инженерной практике часто требуется определить положение центра тяжести тела или механической системы. Рассмотрим методику решения таких задач.

В теоретической механике тело рассматривают как непрерывную совокупность материальных точек. Если тело находится вблизи земной поверхности, то к каждой материальной точке Ci этого тела приложена её сила тяжести G Ci. Эти силы тяжести приближенно образуют систему параллельных сил (линии действия сил тяжести двух материальных точек, находящихся на земной поверхности и отстоящих друг от друга на расстоянии 31 м, образуют угол, равный одной секунде).


Исходя из этого, в технических расчётах принято силы тяжести точек считать системой параллельных сил (рис. 1.78).

На рис. 1.78 использованы следующие обозначения: С – центр тяжести тела; Ci, Ci+n – материальные точки тела; XCi, YCi, ZCi, XCi+n, YCi+n, ZCi+n – координаты материальных точек в системе отсчёта OXYZ; r Ci, r Ci+n – радиус-векторы материальных точек; r C – радиус-вектор центра тяжести тела; XC, YC, ZC – координаты центра тяжести тела; G – сила тяжести тела; – радиус-вектор i-й точки тела (начало радиус-вектора находится в центре С тяжести тела).

 

Силу G = Σ G Ci прикладывают в точке, которую называют центром тяжести тела. Определим это понятие.

Центр тяжести твёрдого тела – геометрическая точка С, для которой сумма произведений весов GCi всех материальных точек, образующих твёрдое тело, на их радиус-векторы , проведенные из этой точки, равна нулю.

 

Согласно определению имеем:

= 0,

где G = Σ GCi – вес тела, равный сумме весов GCi материальных точек этого тела.

Радиус-вектор центра С тяжести тела и его координаты определяют по формулам:

;

;

;

.

Рассмотрим механическую систему, находящуюся в однородном поле сил тяжести (рис. 1.79). Под механической системой условимся понимать систему материальных тел, соединенных между собой недеформируемыми связями.

Силу тяжести G C и вес GC механической системы определяют по формулам:

G C = Σ G Ci; GC = Σ GCi,

где G Ci, GCi – соответственно сила тяжести и вес i-го тела, входящего в механическую систему.


Силу тяжести G C прикладывают в центре С тяжести механической системы. Введем это понятие.

 

Центр тяжести механической системы – геометрическая точка С, для которой сумма произведений весов GCi всех материальных тел, входящих в механическую систему, на их радиус-векторы , проведённые из этой точки, равна нулю.

 

Исходя из этого определения, имеем

= 0.

Очевидно, что центр тяжести тела и центр тяжести механической системы определяют по одной методике.

Радиус-вектор r C и координаты XC, YC, ZC центра тяжести механической системы определяют по формулам:

;

;

;

,

где GCi – вес i-го тела механической системы; r Ci – радиус-вектор центра тяжести i-го тела; XCi, YCi, ZCi – координаты центра тяжести i-го тела механической системы.

В динамике используют понятие центр масс механической системы. Положения центра тяжести механической системы и её центра масс совпадают. Понятие центр масс механической системы более широкое по сравнению с понятием центр тяжести механической системы. Понятие центр масс применимо для любой системы материальных точек независимо от того, находится ли она под действием каких-либо сил или нет, тогда как понятие центр тяжести применяется лишь для системы тел, находящихся в однородном поле сил тяжести.

Центр тяжести однородного тела, заполняющего некоторый объём, называется центром тяжести объёма. Его координаты находят по формулам:

;

;

,

где VCi – элементарный объём тела; V – полный объём тела; XCi, YCi, ZCi – координаты центра тяжести i-го элементарного объёма тела.

Таким образом, для определения положения центра тяжести однородного тела, находящегося в некотором объёме, этот объём необходимо разбить на элементарные объёмы VCi (куб, параллелепипед, призма и т. д., положения центров тяжести которых приведено в справочной документации).

Однородное тело, имеющее форму тонкой пластинки, рассматривают как материальную плоскую фигуру. Координаты центра тяжести плоской фигуры определяют по формулам:

;

,

где FCi – элементарная площадь плоской фигуры; XCi, YCi – координаты центра тяжести элементарной площади; F – площадь плоской фигуры.

Для определения положения центра тяжести плоской фигуры эту фигуру разбивают на элементарные участки площадью FCi (квадрат, прямоугольник, треугольник и т. д., положения центров тяжестей которых известны).

Аналогичным образом определяют положения центров тяжестей однородных тел, имеющих большую протяженность при сравнительно малой площади поперечного сечения (например, проволока).

;

;

,

где LCi – элементарная длина тела; L – полная длина тела, вытянутого в одну линию; XCi, YCi, ZCi – координаты центра тяжести i-го участка элементарной длины тела.

При определении положения центра тяжести широко используют следующие рекомендации:

1) если однородное тело имеет ось симметрии, то его центр тяжести лежит на этой оси;

2) если однородное тело имеет плоскость симметрии, то его центр тяжести находится в этой плоскости;

3) если плоская фигура или линия имеет ось симметрии, то её центр тяжести лежит на этой оси.

 

При решении некоторых задач используют методы отрицательных площадей и объёмов. Поясним это примером.

Пример.

Определить положение центра тяжести однородного диска радиусом R с круглым отверстием, радиус которого r = R/2 (рис. 1.80)

 

 
 

Решение.

Заштрихованная фигура имеет ось симметрии, поэтому центр С её тяжести находится на оси ОХ. Отсюда имеем YC = 0. Координату ХС находим по формуле

,

где FCi – элементарная площадь плоской фигуры; XCi – абсцисса центра тяжести элементарной площади; F – площадь плоской фигуры.

 

Расчленим исходную фигуру на две составные части. Первая фигура – сплошной круг радиусом R. Вторая фигура – круг радиусом r. Для двух тел последняя формула принимает вид

.

Согласно рис. 1.80 имеем:

ХС1 = 0; FC1 = (π ·R2)/2; XC2 = R/2; FC2 = – (π ·r2)/2.

Следует отметить, что FC1 > 0, а FC2 < 0. При наложении площадей FC1, FC2 друг на друга получим исходную площадь фигуры.

Учитывая, что r = R/2 и произведя вычисления, получим

XC = – R/6.

Следует отметить, что координата ХС центра тяжести отрицательна. Найденное значение ХС покажем на рис. 1.80.

Выполнение курсовых заданий на определение координат центра тяжести тела для студентов заочной и дистанционной форм обучения не предусмотрено. Однако такого типа задачи включены в дидактические единицы интернет-экзамена. Рассмотрим один из примеров решения задачи на определение координат центра тяжести.

Пример.

 
 

На рис. 1.81 изображена линия, лежащая в плоскости OXY. Размеры заданы в метрах.

Решение.


Расчленим линию на два участка (рис. 1.82).

Первый участок имеет длину LC1 = 2 м. Координаты центра С1 его тяжести соответственно равны: XC1 = 1 м; YC1 = 0 м. Второй участок имеет длину LC2 = 10 м. Координаты центра С2 тяжести этого участка соответственно равны: XC1 = 2 м; YC1 = 5 м.

Определим координаты центра тяжести линии по формулам:

= = 1,833 м;

= = 4,166 м.

Покажем положение центра С тяжести линии на рис. 1.82.

Таким образом, задача решена, ответы получены.

 


Дата добавления: 2015-09-27 | Просмотры: 1361 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.007 сек.)