Функциональные особенности сердечной мышцы: особенности возбуждения и возбудимости. Кривые потенциала действия и Ферворна миокарда желудочков.
Клетки атипической мышечной ткани (миоциты), составляющие проводящую систему сердца, функционально неоднородны. Из всей массы СА- узла только несколько клеток, называемых истинными пейсмекерами (Р-клетки), обладают способностью к спонтанной генерации потенциала действия. Остальные клетки относятся к потенциальным (латентным) водителям ритма. Они, как и рабочие кардиомиоциты, разряжаются в результате пришедшего к ним возбуждения.Атипические мышечные клетки имеют ряд существенных функциональных особенностей, отличающих их от клеток сократительного миокарда: 1) Они имеют низкий уровень мембранного потенциала - около 50-70мВ. 2) Форма потенциала действия ближе к пикообразному потенциалу. 3) Амплитуда потенциала действия очень низкая - до 100мВ. 4) Наблюдается самопроизвольное (спонтанное) изменение мембранного потенциала за счет высокой проницаемости для ионов натрия.
Ионный механизм возникновения пейсмекерного потенциала выглядит следующим образом: 1) В состоянии "покоя" клетка пропускает ионы натрия. 2) В период деполяризации, когда уровеньпотенциала уменьшится по сравнению с исходным на 2мВ,| наступает резкое увеличение проницаемости сначала для Nа+, а позже для Са2+. 3) Во время фазы реполяризации клеточная МДД мембрана становится более проницаемой для ионов К+. Важным является то, что калиевые каналы очень быстро инактивируются и во время их инактивации вновь активируются быстрые натриевые каналы.
В результате на мембране развивается так называемая медленная диастолическая деполяризация (МДД) - спонтанное (автоматическое) снижение уровня мембранного потенциала до критического уровня деполяризации, в результате чего происходит генерация спонтанного потенциала действия. В норме это характерно только для Р-клеток, составляющих основу синоатриального узла.
Электрическая активность типичных миокардиоцитов Миокардиоциты имеют ряд противоположных особенностей: 1)Они имеют высокий уровень мембранного потенциала - до -80-90мВ. Он обусловлен главным образом градиентом ионов калия и выходом ионов калия из клетки. 2)Форма потенциала действия имеет характерную платообразную форму. 3)Общая амплитуда потенциала действия достигает - 120мВ. 4)Рабочие клетки миокарда в отличие от водителей ритма в состоянии покоя характеризуются чрезвычайно низкой проницаемостью для Na+ и Ca2+.
Рассмотрим механизм возникновения потенциала действия кардиомиоцита желудочков. Миокардиоцит возбуждается в ответ на бегущий от пейсмекера СА- узла ПД, и генерирует собственный ПД. Его длительность достаточно большая -у миокардиоцитов желудочка -330мс.
На кривой ПД миокардиоцита принято выделять пять фаз: 0,1,2, 3,4.
Нулевая фаза - фаза быстрой деполяризации. Мембранный потенциал быстро достигает нуля, а затем +30 мВ. Первая фаза – фаза быстрой начальной реполяризации. Вторая фаза плато, когда мембранный потенциал в течение некоторого времени остается постоянным. Третья фаза - конечной реполяризации. Четвертая фаза - это так называемый диастолический потенциал, который наблюдается в период покоя клетки между двумя систолами.
В период быстрой деполяризации (0 фаза) вначале открываются быстрые натриевые каналы. За счет вхождения ионов Nа+ мембранный потенциал быстро достигает -40 мВ. В этот момент "классические" натриевые каналы инактивируются. Их инактивация сохраняется на протяжении почти всего потенциала действия. В исходное состояние они приходят лишь когда во время реполяризации мембранный потенциал достигнет -70 мВ. Это важно помнить, так как именно с этими процессами связано изменение возбудимости кардиомиоцита при возбуждении.
После того, как произошла инактивация быстрых натриевых каналов, открываются медленные натрий-кальциевые каналы, по которым в миокардиоцит входят ионы натрия и кальция. Мембранный потенциал достигает пика - +30 мВ. Но медленные натрий-кальциевые каналы не в состоянии сразу закрыться, поэтому они остаются открытыми на протяжении не только 0, но и 1 и 2 фаз потенциала действия.
Быстрая реполяризация (1 фаза) обусловлена как выходом ионов калия, так и входом ионов хлора. Затем в период "плато" (2 фаза) продолжается вход в клетку ионов натрия и кальция по медленным натрий-кальциевым каналам. Одновременно в этот период остаются открытыми и калиевые каналы. Число входящих зарядов с ионами кальция и натрия в этот период равно числу зарядов, выходящих с ионами калия. Мембранный потенциал как бы застывает на месте. В фазу конечной реполяризации (3 фаза) кальций-натриевые каналы начинают инактивироваться, а поток калия через мембрану усиливается. Во время последней фазы (4 фаза) - диастолического потенциала калиевые каналы постепенно инактивируются, и поток калия из клетки прекращается.
Особенности возбудимости кардиомиоцитов Так как на протяжении всего потенциала действия быстрые натриевые каналы инактивированы, кардиомиоцит остается невозбудимым длительное время. У него наблюдается абсолютная рефрактерная фаза. Она длится около 270 мс.
После этого наступает фаза относительной рефрактерности (30 мс).
Ее сменяет фаза супернормальной возбудимости (экзальтация). Наличие длительной абсолютной рефрактерной фазы чрезвычайно важно, благодаря ей миокардиоцит не способен к тетаническому сокращению, так как к моменту восстановления возбудимости миокардиоцит заканчивает процесс сокращения. 123. Физиологические особенности кровообращения в миокарде, мозге, лёгких и почках
Сердце снабжается кровью через коронарные артерии, отходящие от аорты. Они разветвляются на эпикардные артерии, от которых отходят интрамуральные снабжающие кровью миокард. На сердце имеется небольшое количество межартериальных анастомозов, артериовенозные шунты отсутствуют. Миокард пронизывает большое количество капилляров, но прекапиллярных сфинктров в них нет. Отношение количества мышечных волокон и капилляров составляет 1:1. Они идут вдоль мышечных волокон. Имеется сеть сосудов (Вьгссення-Тебезия), по строению напоминающих капилляры. Однако их функция неизвестна. Коронарные сосуды иннервируются симпатическими и парасимпатическими нервами, но первых больше. В состоянии покоя у человека через коронарные сосуды проходит 4-5% всего минутного объема крови или 200-250 мл/мин. При, интенсивной Физической работе коронарный кровоток возрастает в 5-7 раз. В период систолы коронарные сосуды частично сжимаются и кровоток в них сжимается. Во время диастолы он восстанавливается. Несмотря на снижение коронарного кровотока в систолу, необходимый уровень метаболизма миокарда поддерживается за счет высокой объемной скорости кровотока в коронарных артериях, их большой растяжимости, усиления венозного оттока, наличия густой капиллярной сети и высокой скорости транскапилярного обмена. Регуляция коронарного кровотока осуществляется миогенными, гуморальными и нервными механизмами. Первый обусловлен автоматией гладких мышц сосудов и обеспечивает поддержание постоянства коронарного кровотока при колебаниях артериального давления от 75до140 мм.рт.ст. Важнейшим является гуморальный механизм. Наиболее мощным стимулятором расширения коронарных сосудов является недостаток кислорода. Дилатация сосудов наступает при снижении содержания кислорода в крови всего на 5%. Предполагают, что в условиях гипоксии миокарда не происходит полного ресинтеза АТФ, что приводит к накоплению аденозина. Он тормозит сокращения ГМК сосудов. Расширяют сердечные сосуды гистамин, ацетилхолин, простагландины Е Симпатические нервы обладают слабым сосудосуживающим влиянием. Слабое вазодилататорное действие оказывают парасимпатические нервы. Ишемия миокарда приводит к тяжелым нарушениям деятельности сердца. Уже через 6-10 минут прекращения кровотока наступает остановка середа. Если аноксия длится 30 мин, то развиваются и структурные изменения в миокарде. После этого восстановить работу сердца невозможно. Поэтому 30-ти минутный срок называется пределом реанимации (гипотермия, мозг).
Кровоснабжение мозга осуществляется двумя внутренними сонными и двумя позвоночными артериями, а отток крови происходит по двум яремным венам. Магистральные артерии соединяются в обширный анастомоз - валлизиев круг. Вены образуют систему синусов. Отходящие от него крупные артерии образуют ее овальных сосудов. Эта сеть вместе с пиальными венами формирует мягкую мозговую оболочку. От пиальных сосудов в глубь мозга идут мелкие радиальные артерии, которые переходят в капиллярную сеть. Большое количество артерий и анастомозов обеспечивают высокую надежность системы кровоснабжения мозга. В основном сосуды иннервируются симпатическими нервами, хотя имеется и холинэргическая иннервация. Через сосуды мозга в покое, проходит 15%. минутного объема крови. Мозг потребляет до 20% всего кислорода и 17% глюкозы. Он очень чувствителен к гипоксии и гипогликемии, следовательно, ухудшению кровотока. За счет механизмов саморегуляции сосуды мозга способны поддерживать его нормальный уровень в широком диапазоне колебаний АД. Однако при его подъеме выше 180 мм.рт.ст, возможно резкое расширение артерий, мозга, увеличение проницаемости гематоэнцефалического барьера и отек мозга. Тонус сосудов мозга регулируется миогенными, гуморальными и нейрогенными механизмами. Миогенный проявляется сокращением гладких мышц сосудов при повышении кровяного давления и наоборот расслаблением при его понижении. Он стабилизирует быстрые колебания кровотока. В частности при изменениях положения тела. Нервная регуляция осуществляется симпатическими нервами, которые кратковременно и незначительно суживают сосуды. Основная роль принадлежит гуморальным факторам, в первую очередь метаболическим. Увеличение концентрации СОз крови сопровождается выраженным расширением сосудов мозга. Подобным же действием обладают катионы водорода, поэтому сдвиг реакции крови в кислую сторону приводит к вазодилатации. При гипервентиляции содержание СОз падает, сосуды мозга суживаются, мозговой кровоток уменьшается. Возникают головокружение, спутанность сознания, судорога и т.д. Аденозин. брадикинин, гистамин расширяют сосуды. Вазопрессин, серотонин, ангиотезин сужашающих.
Существенной особенностью сосудистой системы легких является то, что она включает сосуды малого круга и бронхиальные артерии большого. Первые служат для газообмена, вторые обеспечивают кровоснабжение ткани легких. У человека между ними имеются анастомозы, роль которых в гемодинамике малого круга значительно возрастает при застойных явлениях в нем. Легочная артерия разветвляется на более мелкие артерии, а затем артериолы. Артериолы окружены паренхимой легких, поэтому кровоток в них тесно связан с режимом вентиляции легких. В легких имеется 2 типа капилляров: широкие диаметром 20-40 мкм, и узкие 6-12 мкм. Стенка легочного капилляра и альвеолы образуют функциональную единицу альвеолокапиллярную мембрану. Через нее осуществляется газообмен. Минутный объем крови в сосудах малого круга такой же, как и большом, кровяное давление меньше. Оно не может значительно повышаться из-за большой растяжимости стенок сосудов легких. Нервная регуляция тонуса легочных сосудов осуществляется симпатическими нервами. Они оказывают слабое сосудосуживающее влияние. Из факторов гуморальной регуляции легочного кровотока главную роль играют серотонин, гистамин, ангиотезин, которые суживают сосуды. Катехоламины оказывают слабое вазоконстрикторное действие.
Через почки в состоянии покоя проходит 20% минутного объема, крови. Причем 90% этой крови проходит через корковый слой, образованный нефронами. Давление в капиллярах сосудистых клубочков нефронов значительно выше чем в других капиллярах большого круга и составляет 50-70 мм.рт.ст. Это связано с тем, что диаметр приносящих артериол больше, чем в выносящих. Основное значение в регуляции почечного кровотока принадлежит миогенным механизмам. Они поддерживают постоянство капиллярного давления и кровотока при колебаниях аотериального от 80 до 180 мм.рт.ст. Вторым по значению является гуморальный механизм. Особую роль играют ренин ренинангиотензиновая и калликреинкининовая системы. При снижении системного кровеносного давления, недостатке воды и ионов натрия юкстагломерулярными клетками приносящих артериол начинает вырабатываться фермент ренин. Он поступает в интерстициальную ткань почек и стимулирует образование ангиотензина-2. Ангиотензин-2 суживает выносящие артериолы и снижает проницаемость стенки капилляров клубочков. Фильтрация в них уменьшается, что способствует задержке воды. Кроме того, ангиотензин повышает чувствительность гладкомышечных клеток артериол к норадреналину симпатических нервных окончаний. Это также способствует снижению почечного кровотока. При уменьшении кровотока в ткани почек синтезируется фермент калликреин. Под его влиянием из кининогенов образуется белок брадикинин. Брадикинин расширяет сосуды почек. Почечный кровоток и фильтрация воды в клубочках возрастают. Таким образом, калликренн-кининовая система является антагонистом ренин-ангиотензивной. Особенно ее активность возрастает при физической нагрузке и эмоциональном напряжении. При сужении сосудов почек в них также синтезируется простагландины обладающие вазодилататорным действием. Адреналин и вазопрессин суживают почечные сосуды. Значение нервно-рефлекторных механизмов в регуляции их тонуса невелико. Сосуды иннервирутотся симпатическими вазоконстрикторами. Кратковременное рефлекторное сужение почечных сосудов наблюдается при эмоциональном стрессе. 124. Проводящая система сердца. Опыты Станниуса. Проведение возбуждения в сердце. Роль атриовентрикулярной задержки. Блокады
Проводящая система сердца:
1. Сино-атриальный узел (Кейс-Флека). Он расположен в устье полых вен т.е венозных синусах.
2. Межузловые и межпредсердные проводящие пути Бахмана, Венкенбаха и Торелла. Проходят по миокарду предсердий и межпредсердной перегородке.
3. Атриовентрикулярный узел (Ашофф-Тавара). Находится в нижней части межпредсердной перегородки под эндокардом правого предсердия.
4. Атриовентрикулярный пучок или Гиса. Идет от атриовентрикулярного узла по верхней части межжелудочковой перегородке. Затем делится на две ножки правую и левую. Они образуют ветви в миокарде желудочков.
5. Волокна Пуркинье. Это концевые разветвления ветвей ножек пучка Гиса. Образуют контакты с клетками сократительного миокарда желудочков
Синоатриальный узел образован преимущественно Р-клеткми. Остальные отделы проводящей системы переходными кардиомиоцитами. Однако небольшое количество клеток-пейсмекеров имеется и в них, а также сократительном миокарде предсердий и желудочков. Сократительные кардиомиоциты соединены с волокнами Пуркинье, а также между собой нексусами, т.е. межклеточными контактами с низким электрическим сопротивлением. Благодаря этому и примерно одинаковой возбудимости, кардиомиоцитов, миокард является функциональным синцитием. т.е. сердечная мышца реагирует на раздражение как единое целое.
Роль различных отделов проводящей системы в автоматии сердца впервые была установлена Станниусом и Гаскеллом. Станниус накладывал лигатуры (т.е делал перевязки) на различные участки сердца. Первая лигатура накладывается между венозным синусом, где расположен синоатриальный узел, и правым предсердием. После этого синус продолжает сокращаться в обычном ритме, т.е. с частотой 60-80 сокращений в минуту, а предсердия и желудочки останавливаются. Вторая лигатура накладывается на границе предсердий и желудочков. Это вызывает возникновение сокращений желудочков с частотой примерно в 2 раза меньшей, чем частота автоматии синусного узла, т.е. 30-40 в минуту. Желудочки начинают сокращаться из-за механического раздражения клеток атриовентрикулярного узла. Третья лигатура накладывается на середину желудочков. После этого их верхняя часть сокращается в атриовентрикулярном ритме, а нижняя с частотой в 4 раза меньше синусного ритма, т.е. 15-20 в минуту. Гаскелл вызывал местное охлаждение узлов проводящей системы и установил, что ведущим водителем ритма сердца является синоатриальный. На основании опытов Станниуса и Гаскелла был сформулирован принцип убывающего градиента автоматии. Он гласит, что чем дальше центр автоматии сердца расположен от его венозного конца и ближе к артериальному, тем меньше его способность к автоматии. Нарушение проведения импульса, вырабатывающегося в синусовом узле,- блокада, может возникать в любом участке проводящей системы сердца. Возникает при воспалительных, дистрофических и склеротических процессах в миокарде. При этом наблюдается повреждение проводящей системы сердца. Блокады могут быть как стойкими, так и временными Все виды блокад можно подразделить на две большие группы: предсердные и желудочковые. Так как предсердные блокады в клинической практике встречаются реже, остановимся только на желудочковых блокадах. Среди них выделяют также 2 группы: поперечные и продольные.
Поперечные или атриовентрикулярные блокады возникают в результате нарушения проведения импульса от предсердий к желудочкам. По степени тяжести подразделяют на 4 степени или 3, но тогда вторая имеет 2 подгруппы.
Продольные или внутрижелудочковые блокады н аиболее часто встречаются в виде блокады левой или правой ножек пучка Гиса. Могут возникать блокады лишь отдельных ветвей данных ножек. На ЭКГ имеются характерные признаки: зубец Р не изменен, комплекс QRS возникает регулярно, но так как нарушен ход при проведении импульсов, желудочковые комплексы деформированы и расширены.
Блокада ножек пучка Гиса субъективными симптомами не проявляется и определяется только электрокардиографически. 125. Функциональные особенности миокарда: автоматия сердца и её природа, градиент автоматии Гаскелла. Электрофизиологические изменения в узле Кис-Флекка.
Автоматия – это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы. У здорового человека это происходит в области синоатриального узла, так как эти клетки отличаются от других структур по строению и свойствам. Они имеют веретеновидную форму, расположены группами и окружены общей базальной мембраной. Эти клетки называются водителями ритма первого порядка, или пейсмекерами. В них с высокой скоростью идут обменные процессы, поэтому метаболиты не успевают выноситься и накапливаются в межклеточной жидкости. Также характерными свойствами являются низкая величина мембранного потенциала и высокая проницаемость для ионов Na и Ca Отмечена довольно низкая активность работы натрий-калиевого насоса, что обусловлено разностью концентрации Na и K.
Автоматия возникает в фазу диастолы и проявляется движением ионов Na внутрь клетки. При этом величина мембранного потенциала уменьшается и стремится к критическому уровню деполяризации – наступает медленная спонтанная диастолическая деполяризация, сопровождающаяся уменьшением заряда мембраны. В фазу быстрой деполяризации возникает открытие каналов для ионов Na и Ca, и они начинают свое движение внутрь клетки. В результате заряд мембраны уменьшается до нуля и изменяется на противоположный, достигая +20–30 мВ. Движение Na происходит до достижения электрохимического равновесия по ионам Na, затем начинается фаза плато. В фазу плато продолжается поступление в клетку ионов Ca. В это время сердечная ткань невозбудима. По достижении электрохимического равновесия по ионам Ca заканчивается фаза плато и наступает период реполяризации – возвращения заряда мембраны к исходному уровню.
Потенциал действия синоатриального узла отличается меньшей амплитудой и составляет ±70–90 мВ, а обычный потенциал ровняется ±120–130 мВ.
В норме потенциалы возникают в синоатриальном узле за счет наличия клеток – водителей ритма первого порядка. Но другие отделы сердца в определенных условиях также способны генерировать нервный импульс. Это происходит при выключении синоатриального узла и при включении дополнительного раздражения.
При выключении из работы синоатриального узла наблюдается генерация нервных импульсов с частотой 50–60 раз в минуту в атриовентрикулярном узле – водителе ритма второго порядка. При нарушении в атриовентрикулярном узле при дополнительном раздражении возникает возбуждение в клетках пучка Гиса с частотой 30–40 раз в минуту – водитель ритма третьего порядка.
Градиент автоматии – это уменьшение способности к автоматии по мере удаления от синоатриального узла, то есть от места непосредственной генерализации импульсов. Его наличие можно доказать, например, в опыте Станниуса с накладыванием лигатур между различными отделами сердца лягушки и последующим подсчетом частоты сокращений различных отделов сердца. Автоматия всех нижележащих отделов проводящей системы сердца проявляется только в патологических случаях, в норме они функционируют в ритме, навязанном им синоат-риальным узлом, поэтому собственный их ритм не проявляется. 126. Биотоки сердца и ЭКГ-графия. Правила равностороннего треугольника Эйнтховена. Отведения и характеристика ЭКГ. Клиническое значение ЭКГ.
Электрокардиография — регистрация суммарной электрической активности сердца с определенных участков тела. Электрокардиограмма (ЭКГ) — кривая, отражающая процесс возникновения, распространения и исчезновения возбуждения в различных отделах сердца. Поскольку ткани организма способны проводить электрическое поле во всех направлениях, удается с помощью усилителей зарегистрировать электрические явления на поверхности тела. ЭКГ отражает только изменения электрических потенциалов, но не сокращения миокарда.
А. Возникновение электрического тока в сердце можно наблюдать, если на сокращающееся сердце крысы набросить нерв нервно-мышечного препарата лягушки: мышца начинает сокращаться в ритме сердца. Электрические потенциалы сердца можно зарегистрировать на его поверхности с помощью внеклеточных биполярных электродов. Представим сердце в виде мышечного полого однокамерного органа или полоски миокарда без проводящей системы (рис. 13.7).
При невозбужденном состоянии миокарда записывается прямая линия (1), так как между отводящими электродами нет разности потенциалов. При нанесении раздражения (стрелка) вследствие возникновения возбуждения наружная поверхность полоски миокарда заряжается отрицательно, возникает разность потенциалов между электродами и регистрируется положительное отклонение (2, направлено вверх от изоэлектрической линии).
При охвате возбуждением всей полоски миокарда между электродами разность потенциалов вновь отсутствует, писчик регистратора возвращается в исходное положение, на коротком участке записывается изоэлектрическая линия (3). Затем в области верхнего электрода (позиция 4) начинается реполяризация, заряд клеток миокарда возвращается к исходному (изнутри отрицательный, снаружи положительный), вновь возникает разность потенциалов между электродами, регистрируется отклонение, но уже в обратном направлении — вниз от изоэлектрической линии (4). Далее процесс реполяриза-ции охватывает всю полоску (возбуждение закончено), разность потенциалов между электродами, естественно, исчезает, писчик возвращается к нулевой (изоэлектрической) линии (5). В связи с уменьшенной скоростью распространения процесса реполяризации по сравнению со скоростью распространения фронта деполяризации продолжительность отклонения писчика вниз дольше, а амплитуда его значительно меньше, чем отклонение вверх. Таким образом, записанная кривая весьма похожа на ЭКГ.
Б. Дипольная концепция происхождения электрокардиограммы (ЭКГ) объясняет генез отдельных ее элементов. Каждое возбужденное волокно миокарда представляет собой диполь, вектор которого имеет определенную величину и направление — условно от отрицательного полюса к положительному полюсу. Суть дипольной концепции, объясняющей происхождение элементов ЭКГ, заключается в том, что сердце рассматривается как единый диполь, создающий в окружающем его объемном проводнике (теле) электрическое поле. Вектор единого сердечного диполя (интегральный вектор) представляет собой алгебраическую сумму всех векторов единичных источников тока (кардиомиоцитов), существующих в данный момент, поэтому его называют также суммарным моментным вектором. Он, как и единичный, направлен от возбужденного участка миокарда к невозбужденному. Направление и величина интегрального дипольного вектора определяют направление и величину зубцов ЭКГ, эта величина зависит также от расстояния между регистрирующим электродом и источником тока (сердцем) и обратно пропорциональна квадрату этого расстояния. Дипольный вектор переднего фронта волны возбуждения называют вектором деполяризации, а вектор, направленный в обратную сторону, — вектором реполяризации. Диполь создает в окружающей его среде силовые линии, идущие от положительного заряда диполя к отрицательному. На границе между положительной и отрицательной половинами электрического поля располагается линия нулевого потенциала.
Если суммировать все отдельные момент-ные векторы в течение всего периода деполяризации желудочков, предсердий или реполяризации желудочков, получим средний результирующий вектор. Средний результирующий вектор ^деполяризации желудочков обозначается AQRS, деполяризации предсердий — АР, реполяризации желудочков — AT. Средний результирующий вектор во время возбуждения желудочков направлен вниз и влево, поэтому изопотенциальные положительные линии находятся в этой же области, а отрицательные — вверху справа. Направление среднего результирующего вектора деполяризации желудочков примерно соответствует анатомической оси сердца. ЭКГ регистрируется с определенных участков тела с помощью различных отведений.
ЭКГ-отведение — это вариант расположения электродов на теле при регистрации электрокардиограммы. Отведения могут быть монополярными, когда потенциал регистрируется в одной точке тела, и биполярными, когда регистрируется разность потенциалов между двумя точками тела — с помощью электродов различных систем отведения. Во всех случаях один электрод присоединяют к положительному полюсу гальванометра — это положительный (+), или активный электрод; второй электрод — к отрицательному полюсу гальванометра — это отрицательный (-), или нулевой электрод отведения.
В. Существуют три основные системы отведения.
1. Стандартные биполярные отведения (по Эйнтховену): I отведение — левая рука (+) — правая рука (—); II отведение — правая рука (—) — левая нога (+); III отведение — левая рука (—) — левая нога (+) (рис. 13.8).
2. Грудные однополюсные отведения (по Вильсону): активный электрод (+) накладывают на различные точки грудной клетки спереди (отведение во фронтальной плоскости), а нулевой (—) электрод формируют путем объединения через сопротивления электродов от трех конечностей — двух рук и левой ноги (рис. 13.9).
Расположение активного электрода при грудных отведениях следующее:
V| — четвертое межреберье по правомукраю грудины;
V2 — четвертое межреберье по левому краю грудины;
V3 — на четвертом ребре по левой парастернальной линии;
V4 V5 пятое межреберье по левой срединноключичной линии;
на той же горизонтали, что V4, но по левой передней подмышечной линии;
на той же горизонтали, что V4 и V5, но по левой средней подмышечной линии.
3. Усиленные однополюсные отведения (по Гольдбергеру): aVR, aVL, aVF, что означает: а — augmented (усиленный); V — voltage (потенциал); R — right (правый) — правая рука; L — left (левый) — левая рука; F — foot (нога) — левая нога.
При усиленных отведениях Гольдбергера регистрируют разность потенциалов между электродом, наложенным на одну из конечностей (+) (например, на левую руку для отведения aVL), и нулевым (—) электродом, представляющим собой объединенный электрод от двух других конечностей. С помощью отведения от конечностей потенциалы сердца регистрируют в основном во фронтальной плоскости, с помощью грудных отведений — преимущественно в горизонтальной плоскости. В зависимости от расположения электродов, с помощью которых регистрируют ЭКГ, формируется определенное направление оси отведения (условная линия, соединяющая два электрода данного ЭКГ-отведения).
Если соединить условными линиями электроды первого, второго и третьего стандартных отведений, то получится равносторонний треугольник, образованный осями
стандартных отведений (треугольник Эйнт-ховена; стандартные отведения он предложил в 1913 г.). Треугольник направлен вершиной вниз, каждый его угол равен 60°. Однако при биполярных отведениях по Эйнтховену конечности играют роль только проводников, и поэтому точки, от которых отводятся потенциалы, фактически расположены в месте соединения конечностей с туловищем. Таких точек три, они лежат в вершинах почти равностороннего треугольника, стороны которого и представляют собой оси отведения. Проекция среднего результирующего вектора деполяризации желудочков на стороны треугольников (оси отведения) отражает относительную величину зубца R — она наибольшая во II отведении (средний результирующий вектор деполяризации желудочков расположен практически параллельно оси II отведения), наименьшая — в III отведении. Это правило проекции относится и ко всем другим зубцам ЭКГ. Перпендикуляры, проведенные из центра треугольника Эйнтховена (из центра единого сердечного диполя) к оси каждого стандартного отведения, делят ее на две равные части: положительную, обращенную в сторону положительного (активного) электрода (+) отведения, и отрицательную, обращенную к отрицательному электроду (—). Если вектор сердечного диполя в данный момент возбуждения сердца проецируется на положительную часть оси отведения (положительная полуось), на ЭКГ записывается положительное отклонение — вверх от изолинии. Если же вектор сердечного диполя проецируется на отрицательную часть оси отведения (отрицательная полуось), на ЭКГ регистрируется отклонение вниз от изолинии (отрицательный зубец ЭКГ).
Используя шестиосевую систему координат, можно легко определить графическим способом направление электрической оси сердца — это проекция среднего результирующего вектора деполяризации желудочков (AQRS) на фронтальную плоскость. Для этой цели алгебраическую сумму зубцов QRS (в мм) I и III стандартных отведений откладывают на их положительные полуоси, из концов отрезков восстанавливают перпендикуляры, точку пересечения которых соединяют с центром треугольника Эйнтховена — данная линия есть электрическая ось сердца. Ее направление оценивается углом а (это угол, заключенный между электрической осью сердца и положительной полуосью I стандартного отведения). В норме он колеблется от 0 до +90°. При этом у здорового человека различают три положения электрической оси
сердца: горизонтальное (угол = 0—29°), нормальное (угол = 30—69°) и вертикальное (угол = 70—90°). Отклонения электрической оси вправо — правограмма (+90° < а < +180°) или отклонение ее влево — левограмма (-90° < а < 0°), как правило, свидетельствуют о патологическом процессе. В норме направление электрической оси сердца совпадает с анатомической осью сердца — это линия, соединяющая середину основания сердца с его верхушкой. Однако электрическая ось сердца (правильнее средний результирующий вектор деполяризации желудочков) примерно совпадает с анатомической лишь в том случае, если распространение возбуждения не нарушено.
Г. Элементы ЭКГ и их параметры. ЭКГ любого отведения содержит зубцы, сегменты и интервалы (рис. 13.10).
Зубец ЭКГ — отклонение кривой от изолинии вверх или вниз. Причиной отклонения является наличие разности потенциалов между отводящими электродами.
Сегмент ЭКГ — отрезок кривой ЭКГ, не содержащий зубца (участок изолинии). Изолиния регистрируется, когда нет разности потенциалов между отводящими электродами: либо сердце не возбуждено, либо все отделы предсердий или желудочков охвачены возбуждением. ЭКГ содержит два сегмента — PQ и ST (зубец S может отсутствовать, в этом случае начало сегмента — от конца зубца R).
Интервалы ЭКГ — отрезки кривой ЭКГ, состоящие из сегмента и прилежащих к нему зубцов. В одном цикле возбуждения сердца различают три интервала ЭКГ: Р— Q, состоящий из зубца Р и сегмента PQ; интервал Q— Т, включающий весь желудочковый комплекс QRST вместе с сегментом ST; интервал S— Т, включающий сегмент ST и зубец Т.
Зубец Р отражает процесс деполяризации (распространения возбуждения) и быстрой начальной реполяризации правого и левого предсердий. Амплитуда зубцов Р в различных отведениях колеблется в пределах 0,15—0,25 мВ (1,5—2,5 мм), длительность — 0,1 с.
Сегмент PQ отражает период полного охвата возбуждением предсердий, в результате чего нет разности потенциалов между его участками, распространение возбуждения по атриовентрикулярному узлу (атриовентрику-лярная задержка), пучку Гиса и его разветвлениям. Его продолжительность 0,04—0,1 с. Реполяризация предсердий в основном не регистрируется, так как она совпадает с деполяризацией желудочков и поглощается комплексом QRS.
Интервал Р— Q отражает процесс распространения возбуждения по предсердиям и полный охват их возбуждением, распространение возбуждения по атриовентрикулярному узлу, пучку Гиса, его ножкам и волокнам Пуркинье. Его продолжительность 0,12—0,20 с; с увеличением частоты сердечных сокращений продолжительность уменьшается. Увеличение этого интервала свидетельствует о замедлении проведения возбуждения в атриовентрикулярном узле или пучке Гиса.
Желудочковый комплекс QRST отражает процесс распространения возбуждения по желудочкам (комплекс QRS), полного охвата их возбуждением (сегмент RST, чаше ST) и реполяризации желудочков (зубец Т). Зубец Q в большинстве отведений обусловлен начальным моментным вектором деполяризации межжелудочковой перегородки, возбуждение к которой передается с ножек пучка Гиса. Величина зубца во всех отведениях, кроме aVR, в норме не превышает '/4 амплитуды зубца R в том же отведении, а продолжительность — 0,03 с. Зубец R отражает процесс распространения возбуждения по миокарду правого и левого желудочков, от эндокарда к эпикарду. Величина зубца R в отведениях от конечностей обычно не превышает 2 мВ (20 мм), а в грудных — 2,5 мВ (25 мм). Зубец S отражает процесс распространения возбуждения в базальных отделах межжелудочковой перегородки. Его амплитуда весьма вариабельна и не превышает 2,0 мВ (20 мм), иногда он совсем отсутствует. Максимальная продолжительность комплекса QRS не превышает 0,1 с (чаще она равна 0,07—0,09 с), удлинение этого комплекса служит одним из признаков нарушения внутрижелудочкового проведения возбуждения.
Сегмент RST (S—T) — отрезок ЭКГ от конца комплекса QRS до начала зубца Т, отражающий период полного охвата возбуждением желудочков (плато ПД кардиомиоци-тов), поэтому разность потенциалов в различных точках желудочков отсутствует, регистрируется изолиния, продолжительность ST— около 0,12 с. Смещение сегмента вверх или вниз в отведениях от конечностей не превышает 0,05 мВ (0,5 мм), в грудных — 0,2 мВ (2 мм).
Зубец Т отражает процесс быстрой конечной реполяризации миокарда желудочков. Наибольшему зубцу R соответствует наибольшая величина зубца Т. Амплитуда зубца Т в отведениях от конечностей не превышает 0,5—0,6 мВ (5—6 мм), а в грудных отведениях — 1,5—1,7 мВ (15—17 мм), продолжительность — 0,12—0,20 с. Направления зубцов Т и R чаще совпадают, хотя эти зубцы отражают разные процессы.
Зубец U, положительный по направлению, небольшой по амплитуде, регистрируется иногда после зубца Т, особенно в правых грудных отведениях (V,—V2). Происхождение его неясно.
Интервал Q— Т — это отрезок ЭКГ от начала комплекса QRS до конца зубца Т. Этот интервал называют электрической систолой, по времени она почти совпадает с механической систолой желудочков.
Продолжительность интервала Q— Т определяется по формуле Базетта:
Q- T=- R,
где К — коэффициент, равный 0,37 для мужчин, 0,40 — для женщин; R — R — длительность одного сердечного цикла в секундах. Таким образом, длительность интервала Q—T весьма вариабельна и зависит от частоты сердечных сокращений. При частоте сокращений 75 в 1 мин его продолжительность 0,33 с, при частоте 180—0,2 с.
Электрическая диастола желудочков — это совокупность элементов ЭКГ от конца зубца Т до начала зубца Q следующего комплекса ЭКГ, практически совпадающая с механической диастолой и покоем желудочков.
Интервал R — R соответствует расстоянию между вершинами двух зубцов R, по времени он равен длительности одного сердечного цикла. Чем больше частота сердечных сокращений, тем короче это время. Этот интервал дает возможность определить частоту кардиоциклов, наличие или отсутствие аритмии в сердечной деятельности (интервалы R—R неодинаковы, когда различия превышают 10 % средней их величины).
Соотношения величин зубцов ЭКГ в норме следующие: Q:R = 1:4; P:T:R — 1:3:9.
Таким образом, различные параметры ЭКГ дают разностороннюю информацию о состоянии сердца и широко используются в клинической практике.
Дата добавления: 2015-12-15 | Просмотры: 4114 | Нарушение авторских прав
|