Краткие теоретические сведения. В настоящее время максимально ранняя диагностика возбудителей инфекций является важнейшим принципом контроля за их распространением.
В настоящее время максимально ранняя диагностика возбудителей инфекций является важнейшим принципом контроля за их распространением.
Обнаружение и идентификация возбудителей инфекционных заболеваний животных и птиц представляет собой одну из наиболее важных задач ветеринарной бактериологии и вирусологии. Решение этой задачи обеспечивается богатым арсеналом методических приемов, - начиная от клинических методик вирусологического и бактериологического тестирования и кончая иммунохимическими и молекулярно-биологическими методами. В каждом случае характер и сложность диагностических приемов зависят от биологии возбудителя инфекции. В отличие от растений и животных микроорганизмы как правило лишены отличительных морфологических и поведенческих свойств, позволяющих определять их принадлежность к определенным таксонам. Поэтому для идентификации патогенных микроорганизмов широко привлекаются биохимические, серологические и молекулярно-генетические подходы. Биохимический анализ выделенного возбудителя в большинстве случаев дает возможность правильно установить родовую или видовую его принадлежность. Однако существенным недостатком данного подхода является требование предварительного выделения возбудителя в виде чистой культуры. Некультивируемость микроорганизмов - главная причина, по которой культуральный метод все более и более теряет свои позиции по мере появления альтернативных подходов. При этом под некультивируемостью мы понимаем как невозможность на современном уровне развития микробиологии подобрать условия культивирования для большинства микроорганизмов, существующих в природе (по некоторым данным эта цифра может достигать 99%), так и невозможность высеять хорошо культивируемый микроорганизм из какой-либо биологической среды, содержащей ингибиторы его размножения. Кроме того, целый ряд клинически важных бактериальных возбудителей животных может плохо культивироваться из-за широкого применения в современной ветеринарной лечебной практике антибиотиков широкого спектра действия. Помимо этого, для многих возбудителей культуральный метод представляет собой трудоемкую, длительную и дорогостоящую процедуру. В то же время традиционные серологические тесты: РСК, РДП, РГА, а порой и наиболее перспективные методы диагностики - иммуноферментный анализ (ИФА) и иммуноблотинг (ИБ), оказываются фактически неэффективными или принципиально неприемлемыми для выявления инфекционных возбудителей по причине, главным образом, их низкой чувствительности.
Поэтому в последнее время все большее распространение получают новейшие методы диагностики, основанные на обнаружении в исследуемых клинических образцах специфических нуклеотидных последовательностей генома микроорганизмов. Генодиагностика — это комплекс методов, которые позволяют обнаруживать гены или последовательности нуклеиновой кислоты, специфичные для определения вида возбудителя инфекционного заболевания. Генодиагностика — относительно новый раздел диагностики, возникший гораздо позже методов, основанных на микробиологических и иммунологических принципах. Поэтому возможности и области применения этого метода еще не так широко известны микробиологам и эпизоотологам. В связи с этим целью данного обзора является рассмотрение как современного состояния генодиагностики, так и областей ее применения. Это, по нашему мнению, позволит показать, что генодиагностика возникла не для того, чтобы потеснить имеющиеся микробиологические и иммунологические методы, а, наоборот, чтобы дополнить их, позволяя решать те задачи диагностики инфекционных заболеваний, которые ранее были не доступны классическим методам.
Создание всего нового, в том числе и новых методов диагностики, возможно только на основе фундаментальных разработок. Становление и совершенствование генодиагностики тому яркий пример. Начиная с 1953 г., когда Дж. Уотсон и Ф. Крик опубликовали работу, посвященную структуре ДНК, стало ясно, что основной принцип, лежащий в основе всего живого – принцип комплементарности. Однонитевая цепь ДНК для образования двунитевого комплекса взаимодействует с цепью ДНК, обладающей комплементарной последовательностью. С этих пор данный принцип стал широко и успешно использоваться для решения различных, более частных проблем, в том числе и для диагностики патогенных микроорганизмов.
До конца 80-х годов реакция гибридизации ДНК с ДНК была основой генодиагностики. Для проведения этой реакции необходимо было располагать клонированной последовательностью ДНК, которую использовали в качестве молекулярного зонда. Молекулярный зонд должен быть специфичным по отношению к ДНК тестируемого микроорганизма, а также желательно быть частью гена, кодирующего синтез одного из факторов патогенности. При использовании молекулярного зонда, удовлетворяющего этим требованиям, можно не только идентифицировать микроорганизм, но и давать заключение о его вирулентном потенциале и эпидемиологической значимости, что особенно важно при исследовании микроорганизмов, выделяемых из объектов внешней среды.
Использование молекулярного зондирования позволило в значительной степени изменить ряд представлений о диагностике инфекционных заболеваний. Было доказано, что тестирование генов факторов патогенности во многих случаях более информативный подход по сравнению с исследованием различных фенотипических свойств, таких как определение серотипа, фаготипа, способности агглютинироваться в присутствии специфических сывороток, которые далеко не всегда отражают корреляционные связи с вирулентностью исследуемого микроба.
Однако метод генодиагностики, основанный на реакции гибридизации ДНК с ДНК, не отличается высокой чувствительностью и позволяет обнаруживать 104-105 мишеней (это могут быть бактериальные клетки, вирусные частицы или очищенная нуклеиновая кислота) в пробе. В связи с этим данный подход является мало информативным при диагностике тех инфекционных состоянии, при которых концентрация микробов ниже порога чувствительности метода, а сами микробы в силу тех или иных причин не размножаются в лабораторных условиях. С такими ситуациями микробиологам приходиться сталкиваться повсеместно: например при диагностике хронических инфекционных состоянии, обусловленных персистенцией бактерий или вирусов. Те же трудности приходится преодолевать при идентификации практически всех внутриклеточных паразитов, таких как вирусы, риккетсии, хламидии, микоплазмы, требующих для своего культивирования или очень сложных питательных сред, или же клеточных, или тканевых культур.)
Следующим шагом фундаментальной науки — молекулярной биологии гена — было создание способа исследования, получившего название полимеразной цепной реакции (ПЦР), позволяющего не только преодолевать вышеперечисленные трудности, но и открывающего новые возможности при лечении и эпидемиологическом анализе инфекционных заболеваний.
Принцип ПЦР был описан в 1986 г. К. Мullis, получившим за это Нобелевскую премию в 1993 г. В основе этого метода лежит многократное копирование с помощью фермента ДНК-полимеразы определенного фрагмента ДНК, который является маркерным для данного вида. Механизм копирования таков, что комплементарное достраивание нитей может начаться не в любой точке последовательности ДНК, а только в определенных стартовых блоках — коротких двунитевых участках. Для создания стартовых блоков в заданных участках ДНК используют затравки, представляющие собой специально синтезированные in vitro олигонуклеотиды длиной около 20 нуклеотидов, называемые праймерами. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что синтез ДНК, осуществляемый ДНК-полимеразой, протекает только между ними. В результате происходит экспоненциальное увеличение количества копий специфического фрагмента по формуле 2n, где п — число циклов амплификации. Поскольку праймеры входят в состав амплифицируемого фрагмента, его размер определяется числом олигонуклеотидных пар между 5'-концами праймеров. Обычно размер фрагмента составляет несколько сотен нуклеотидных пар.
Построение новых ДНК нитей из дезоксирибонуклеотидтрифосфатов осуществляет фермент термостабильная ДНК-полимераза, называемая Таq-полимеразой. Процесс амплификации заключается в повторении циклов амплификации, состоящих из денатурации ДНК (1 мин), отжига праймеров (1—2 мин) и построения фрагмента (1—2 мин). В результате 30—35 циклов амплификации синтезируется 108 копий фрагмента, что делает возможным визуальный учет результатов после электрофореза в агарозном или акриламидном геле. Использование термостабильной ДНК-полимеразы позволило автоматизировать процесс амплификации с помощью специального прибора, называемого термоциклером. Этот прибор автоматически осуществляет смену температур согласно заданной программе и числу циклов амплификации.
Таким образом, ПЦР аналогична росту бактерий на искусственных питательных средах — процессу биологической амплификации, при которой одна микробная клетка, образуя видимую колонию, амплифицируется в 105—106 раз, давая возможность определить свойства бактерии, манипулируя уже с целой колонией. Как и питательные среды, которые могут быть селективными, поддерживающими рост только одного микроорганизма, или обогатительными, дающими возможность размножаться широкому кругу микробов, так и праймеры, определяющие специфичность ПЦР, могут быть строго видоспецифичными или с их помощью можно выявить целые роды или семейства микроорганизмов. Но в то же время ПЦР имеет принципиальное преимущество перед культуральными методами. Диагностические потенции ПЦР не ограничены способностью микроба расти на искусственных средах или в культуре клеток. Поэтому основное преимущество ПЦР перед культуральными методами состоит не в высокой чувствительности ПЦР-метода (так как чувствительность этих методов сопоставима), а в способности идентифицировать и определять свойства тех микроорганизмов, которых не удается по тем или иным причинам размножать в лабораторных условиях. Здесь уместно отметить, что идентификационные тест-системы, основанные на ПЦР, разрабатываются для микроорганизмов с известными к данному моменту последовательностями ДНК в интересующих генах.
Наивысшая чувствительность ПЦР обычно достигается при работе с чистой культурой микроба или, что еще лучше, с очищенной нуклеиновой кислотой. Эта чувствительность автоматически не трансформируется в чувствительность метода при работе с клиническим материалом. На успех определения при работе с этим материалом влияют такие факторы, как методика приготовления образца, возможное присутствие ингибитора фермента, осуществляющего амплификацию, объем образца при низких концентрациях тестируемых молекул.
Наибольшее внимание среди этих методов привлекает полимеразная цепная реакция (ПЦР) в основе которой лежит многократное повторение циклов удвоения (амплификация) специфического участка нуклеотидной последовательности. Главное достоинство метода - очень высокая чувствительность: в результате амплификации концентрация специфической олигонуклеотидной последовательности в реакционной пробе возрастает в десятки миллионов раз. За последние 10 лет достигнут значительный прогресс в изучении молекулярной основы наследственных болезней и в их диагностике с помощью молекулярного анализа ДНК- В первую очередь это относится к болезням, которые вызваны мутацией в одном гене (моногенным). Каждый год увеличивается список наследственных болезней, которые могут быть выявлены методами анализа последовательности нуклеиновых оснований хромосомной ДНК.
Появилась возможность с помощью исследования образцов ДНК поставить диагноз наследственного заболевания еще до появления клинических симптомов или в пренатальный период. Это позволяет выявить носителей мутантного гена при аутосомно-рецессивных болезнях, а также распознать фенотипически сходные, но генетически различные заболевания. В настоящее время расширяется сфера применения этих методов. Помимо диагностики болезней с установленным типом наследования, они начинают использоваться для изучения и мультифакториальных заболеваний (коронарная болезнь сердца, сахарный диабет, опухоли и др.), а также для идентификации личности, установления отцовства и др.
Особую диагностическую ценность ДНК-анализ приобретает при тех наследственных болезнях, при которых неизвестен биохимический дефект, лежащий в их основе, и которые поэтому не могут быть выявлены традиционными методами лабораторной диагностики. Кроме того, этот метод практически незаменим в тех случаях, когда патологический ген оказывает свое действие только в тканях, которые недоступны для исследования (мозг, печень).Ключом к расширению клинического применения достижений современной молекулярной генетики являются не только разработка методов рекомбинантной ДНК, но и значительное упрощение технологии проведения ДНК-анализа, повышение чувствительности, быстроты и надежности методов с их последующей автоматизацией. Остановимся теперь более подробно на основных этапах технологии анализа.
Получение и хранение ДНК. Геномную ДНК выделяют с помощью многоступенчатых методов из тканей, содержащих ядерные клетки, в том числе из лимфоцитов периферической крови, лимфобластоидных клеточных линий, а также из амниоцитов и ворсин хориона плода, полученных путем биопсии. Кровь для исследования берут в количестве около 10мл с антикоагулянтом: цитратом, глюкозоцитратным раствором (глюгициром) или ЭДТА. В большинстве лабораторий ДНК выделяют из взятых образцов в тот же день, но их можно и хранить при температуре —20°С. Первым этапом анализа ДНК является ее экстракция из тканей по стандартному методу. Клетки крови (или ворсин хориона) гемолизируют, обрабатывают протеиназой К в течение ночи для расщепления белков, экстрагируют сопутствующие вещества фенолом и хлороформом и осаждают нуклеиновые кислоты этанолом. Методы экстракции ДНК постоянно совершенствуются, разрабатываются различные модификации, направленные на ускорение и повышение эффективности методов, а также использование менее вредных для исследователя реактивов.
Количество и чистота препарата ДНК оцениваются спектрофотометрически. Экстрагированная ДНК стабильна и может храниться неопределенно долгое время. Это имеет большое значение, так как образцы от людей с генетическими заболеваниями могут быть собраны и сохранены для будущих сопоставлений при обследовании других членов семьи, а также для проведения повторных исследований после получения ДНК-проб нового поколения. Обычно образцы ДНК дублируются и хранятся раздельно в двух морозильниках. Хранение ДНК обеспечивает возможность ДНК-диагностики в семьях, в которых пожилые или страдавшие наследственными заболеваниями родственники умерли до того, как стало возможным предсказательное тестирование. В случаях, когда пораженные родственники уже умерли и ДНК лейкоцитов недоступна для анализа, оказалось возможным использовать замороженную ткань мозга, взятую на аутопсии.
Для радиоизотопного анализа по Саузерну обычно требуется 5—10 мкг геномной ДНК, что составляет около 2-10–18 мол. Такое количество ДНК присутствует приблизительно в 106 ядерных клеток, которые могут быть выделены менее чем из 1 мл крови, а в случае пренатальной диагностики — из биоптата ворсин хориона или из амниоцитов. Еще меньшее, крайне незначительное количество ДНК необходимо в тех случаях, когда анализу предшествует амплификация (умножение) участка ДНК-мишени с помощью недавно разработанного метода, использующего повторные циклы полимеразной цепной реакции (ПЦР).
В настоящее время используется несколько способов подготовки образца для проведения ПЦР. Процедура подготовки пробы включает лизис микроба и экстракцию нуклеиновой кислоты. С целью разрушения микробной клетки используют простое кипячение, замораживание—оттаивание в присутствии лизоцима, а также специальные лизирующие буферы, содержащие детергенты и протеиназу. Выбор метода, как правило, диктуется природой микроба, а точнее природой его клеточной стенки. Для экстракции ДНК используют два основных метода. Во-первых, классическую процедуру фенольно-хлороформной экстракции. При этом достигается хорошая очистка ДНК и в первую очередь от ингибиторов Таq-полимеразы, но неизбежны большие потери нуклеиновой кислоты, особенно заметные при работе с образцами небольшого объема с низкой концентрацией инфекционного агента. Другой способ, применяемый для очистки нуклеиновой кислоты, основан на использовании нуклеосорбентов. Подготовка материала с применением нуклеосорбента занимает меньше времени и более проста в исполнении, хотя не всегда может гарантировать удаление возможных ингибиторов.
Зная возможности и преимущества этого метода, сформулируем те направления исследований в инфекционной патологии, в решении которых ПЦР начинает играть ведущую роль:
— диагностика хронических инфекционных состояний, обусловленных персистенцией бактерий или вирусов, — наиболее очевидная область применения ПЦР в диагностических целях;
— ПЦР — незаменимый инструмент при идентификации и молекулярно-генетических исследованиях практически всех внутриклеточных и мембранных паразитов, таких как вирусы, риккетсии, хламидии, микоплазмы;
— ПЦР является наиболее эффективным способом выявления и изучения возбудителей сапронозов, которые, находясь во внешней среде в "некультивируемом" состоянии, способны там сохраняться, переживая неблагоприятные внешние условия в межэпидемические периоды;
— ПЦР позволяет проводить определение антибиотикорезистентности у медленно растущих и труднокультивируемых бактерий;
— технология ПЦР коренным образом изменила способы маркирования штаммов для целей эпидемиологического анализа, тем самым расширив его возможности.
Теперь обратимся к конкретным примерам, которые показывают, как технология ПЦР позволяет решать перечисленные выше задачи.
На настоящий момент преимущество ПЦР-анализа перед "золотым стандартом" (так красиво называют культуральный метод выявления бактерий и вирусов) состоит в следующем: 1) более высокая частота обнаружения микроба, превышающая культуральный метод на 6— 7%. Эти различия объясняются возможной гибелью микроба при хранении и транспортировке, тогда как ПЦР способна обнаруживать и нежизнеспособные формы микроорганизма; 2) время, необходимое для обнаружения микроба культуральным методом, составляет около 4-6 сут., тогда как при использовании ПЦР через 4—5 ч; 3) использование технологии ПЦР позволяет проводить определение инфекционного агента в образцах, взятых неинвазивным путем.
Одной из наиболее интересных сфер приложения ПЦР в эпидемиологии является использование этой технологии для мониторинга объектов внешней среды. Помимо решения чисто прикладных задач (усовершенствование методик обнаружения возбудителей в пробах воды, почвы и т. д.) в этой области, ПЦР является важным инструментом для получения фундаментальной информации о способах поддержания жизнеспособности микроорганизмов вне связи с организмом животного или человека.
За последние 5—7 лет накоплен достаточно обширный материал, свидетельствующий о способности многих видов патогенных бактерий переходить в так называемое некультивируемое состояние. Формирование некультивируемых форм бактерий сопровождается глубокими перестройками метаболизма и изменением морфологии бактериальной клетки. В результате клетки бактерий, сохраняя жизнеспособность, перестают делиться и, будучи перенесены на плотную питательную среду, не формируют колоний. Однако переход в некультивируемое состояние не является необратимым, и под воздействием изменяющихся условий внешней среды некультивируемые клетки бактерий могут восстанавливать способность к пролиферации.
Очевидно, что некультивируемые формы бактерий нельзя выявить традиционными микробиологическими приемами, включающими посевы из исследуемых образцов на плотные питательные среды. Микроскопия с использованием витальных красителей в данном случае может служить лишь инструментом изучения формирования некультивируемых форм в лабораторном эксперименте. Показано, что переходить в некультивируемое состояние могут возбудители многих заболеваний человека. Переход в некультивируемое состояние представляет собой способ поддержания жизнеспособности в неоптимальных для активного роста условиях. Эта способность обнаруживается в первую очередь у патогенных бактерий—сапрофитов. Диагностика заболеваний, вызванных многими из подобных инфекционных агентов, успешно обеспечивается традиционными методами. Однако единственным в настоящее время методическим подходом, способным доказать присутствие в образце некультивируемых форм возбудителя, является ПЦР. При использовании такого подхода продемонстрировано, что эндемичность ряда природных очагов объясняется способностью возбудителей сапронозов сохраняться в объектах внешней среды в некультивируемом состоянии. Это положение, по нашему мнению, чрезвычайно важно для всей системы эпизоотоологического надзора, так как дает возможность, используя технологию ПЦР, выявлять потенциально опасные штаммы возбудителей сапронозов раньше, чем они попали в человеческую популяцию и вызвали эпидемиологическое осложнение.
Большое значение приобретает метод ПЦР при контроле продуктов питания. Таким образом, технология ПЦР является мощным инструментом, обеспечивающим возможность фундаментального изучения хронических инфекционных процессов и экологии возбудителей инфекционных заболеваний.
ПЦР — это метод амплификации in vitro, с помощью которого в течение нескольких часов можно выделить и размножить определенную последовательность ДНК в количестве, превышающем исходную в 108 раз. При амплификации с помощью ПЦР используют два олигонуклеотидных праймера (затравки), фланкирующие участок ДНК, специфический для определяемого возбудителя, процесс амплификации заключается в повторяющихся циклах температурной денатурации ДНК, отжига праймеров с комплементарными последовательностями и последующей достройки полинуклеотидных цепей с этих праймеров ДНК-полимеразы. Праймеры ориентированы таким образом, что синтез с помощью полимеразы протекает только между ними, удваивая количество копий этого участка ДНК. Амплифицированный участок именуют "ампликоном". В результате происходит экспоненциальное увеличение количества специфического фрагмента приблизительно по формуле 2n, где n — число прошедших циклов амплификации. Поскольку праймеры физически включаются в концы продуктов застройки, они детерминируют сам продукт реакции — фрагмент ДНК, равный по длине расстоянию между 5-концами праймеров на исследуемом участке ДНК. Процесс амплификации идет эффективно, если использовать термостабильную ДНК-полимеразу, выделенную из бактерии Thermus aquaticus (Tag). К достоинствам указанной полимеразы относится то, что нет необходимости ее замены после каждого цикла, а также сравнительно высокий температурный оптимум детерминируемой ею реакции (70— 75°С). Праймеры для ПЦР обычно имеют длину, как правило, около 20 нуклеотидов.
Рассмотрим основные характеристики ПЦР-анализа.
Надежность — защищенность анализа от ложноположительных и ложноотрицательных результатов. Ложноположительный результат анализа является следствием заражения образца или реактивов ДНК исследуемого образца или, что бывает чаще, амплификатом. В связи с этим необходимо пространственное разделение диагностической лаборатории как минимум на три блока: в одном из них проводить приготовления ДНК-образца, в другом — постановку амплификации и в третьем — электрофорез и индикацию. Перенос реактивов и оборудования между блоками должен быть исключен. Достаточным контролем является отсутствие сигнала для образца с заведомо отсутствующей ДНК исследуемого образца. Ложноотрицательный результат может быть вызван тривиальными причинами: недостаточной чувствительностью реакции, ошибками оператора в выделении ДНК и проведении амплификации и др. Поэтому в каждой серии анализов присутствует положительный контроль — образец с заведомо присутствующей матрицей для данных праймеров, например хромосомная ДНК искомого возбудителя инфекции. Кроме того, причиной ложноотрицательного результата может быть присутствие в образце ингибиторов реакции. При использовании всех указанных контролей, надежного оборудования и жестко стандартизованных реактивов метод ПЦР высоконадежен.
Чувствительность анализа характеризуется очень низкой концентрацией клеток или вирусных частиц в пробе, дающей положительный результат анализа, и определяется эффективностью методики выделения ДНК возбудителя, чувствительностью собственно ПЦР и чувствительностью выбранного метода индикации. Метод выделения ДНК должен быть еще дешевым и простым. ПЦР при оптимальных условиях крайне чувствительна: в модельной системе в сочетании с блотгибридизацией с радиоактивно меченным ДНК-зондом удается зарегистрировать 3—5 копий генома цитомегаловируса в пробе. Достигаются оптимальные условия подбором температурно-временного режима, концентрации ионов магния, праймеров и фермента в реакционной смеси, применением при необходимости "горячего старта" — добавления фермента в реакционную смесь, уже прогретую до температуры плавления ДНК. Достигнуть предельно высокой чувствительности при самых простых методах индикации позволяет и четырехпраймерная амплификация (ЧПА). ЧПА реализует принцип "русской матрешки": вначале пара "внешних" праймеров запускает синтез первого ампликона, затем после нескольких циклов пара праймеров, комплементарных внутренним последовательностям первого ампликона, запускает синтез второго, меньшей длины. В модельных системах при диагностике цитомегаловируса ЧПА в сочетании с электрофорезом в ПААГ и окрашиванием бромистым этидием дает возможность уверенно регистрировать порядка 10 геномов в пробе. Предел чувствительности ПЦР-диагностикума инфекционных заболеваний (при условии использования 100 мкл клинического образца) в 100—1000 возбудителей в 1 мл. Такой чувствительности могут достигать только культуральные методы диагностики.
Важным параметром является избирательность анализа — способность диагностикума выявлять возбудителей инфекции конкретного вида на фоне любых других микроорганизмов, вирусов и клеток организма хозяина. С этой точки зрения возможности ПЦР-диагно-стикумов уникальны: соответствующим образом выбранная последовательность ДНК мишени (выбор праймеров) позволяет в зависимости от целей диагностикума выявлять вид и отдельные штаммы микроорганизмов.
Уникальность метода обусловлена тем, что он обладает самой высокой чувствительностью и специфичностью, превосходящими получаемые культуральным методом. Учитывая продолжительность и трудоемкость процедуры выращивания культуры клеток (до месяцев), преимущества ПЦР (5—8 ч) очевидны. Специалистами фирмы проведена сравнительная оценка эффективности метода ПЦР по сравнению с традиционными методами, показаны преимущества и ограничения применения метода в клинической практике. Так, проведено сравнение результатов ПЦР-анализа и нерадиоизотопного гибридизационного анализа клинических образцов на содержание хламидия трахоматис и уреаплазма уреалитикум с использованием в качестве метки комплексов платины и показано хорошее совпадение результатов, полученных указанными методами ДНК-диагностики. Исследованиями в ряде ведущих лабораторий мира на примере обнаружения в биологических пробах хламидия трахоматис показано, что методом ПЦР или лигазной цепной реакции определяют на 10—20% больше положительных проб, чем культуральным методом или подтверждающими некультуральными методиками. Методом ПЦР в клиническом материале (соскоб клеток эпителия) нами обнаружено наличие двух биоваров уреаплазма уреалитикум. Важным параметром является избирательность анализа — способность диагностикума выявлять возбудителей инфекции конкретного вида на фоне любых других микроорганизмов, вирусов и клеток организма хозяина. С этой точки зрения возможности ПЦР-диагностикумов уникальны: соответствующим образом выбранная последовательность ДНК мишени (выбор праймеров) позволяет в зависимости от целей диагностикума выявлять вид и отдельные штаммы микроорганизмов.
Забор материала. Как правило, это соскоб эпителиальных клеток со слизистой цервикального канала или уретры, могут использоваться слюна, выделения, моча, у детей — соскоб с миндалин. Собранный биоматериал желательно сразу использовать для анализа. Хранить биоматериал можно при —20°С не более 0,5 мес. Соскоб из цервикального канала желательно брать в середине менструального цикла. У лиц, принимающих антибиотики, уросептики, наркотические вещества, взятие биологического материала для анализа следует производить через 14 сут после их отмены.
ЗАО "ВСМ" производит набор лабораторных изделий и поставляет "под ключ" диагностические центры для ПЦР-диагностики, обеспечивает гарантийное и постгарантийное обслуживание оборудования, проводит обучение методу. Минимальный набор состоит из следующих приборов:
1. Термостат, программмируемый для проведения ПЦР-анализа "ВСМ" (рекомендован к применению в медицинской практике Минздравом РФ), — прибор для проведения амплификации (умножения) детектируемого участка генома возбудителя заболеваний. Прибор рассчитан на одновременный анализ 24 образцов (из которых один положительный и один отрицательный контроль) клинического материала.
2. Термостат 2Т001 ("ВСМ") — предназначен для термостатирования биологических проб.
3. Настольная миницентрифуга (Элми) — предназначена для подготовки проб исследуемого клинического материала. Обеспечивает максимальную частоту вращения ротора 14 000 об/мин.
4. Микроцентрифуга-вортекс МВ01 ("ВСМ") — предназначена для низкооборотного центрифугирования и ресуспендирования биологических проб.
5. Источник питания низковольтный "ИП-01" ("ВСМ") — предназначен для серийного анализа биологических образцов при помощи электрофореза при двух фиксированных значениях напряжения.
6. Камера для электрофореза КЭ-01 ("ВСМ") — предназначена для проведения исследования биомедицинских проб методом электрофореза в агарозном геле.
7. Трансиллюминатор ТР-01 ("ВСМ") — источник ультрафиолетового излучения, предназначен для исследования люминесцирующих следов в жидкостях и гелях.
В состав набора входят микродозаторы, подставки и коробочки для пробирок типа Эппендорф. Возможно комплектование диагностических центров любым отечественным и зарубежным оборудованием, программируемый термостат может снабжаться стабилизатором, а трансиллюминатор фотоаппаратом или монитором, компьютером для архивации результатов. ЗАО "ВСМ" обеспечит Ваших специалистов необходимыми методическими материалами, проводит консультирование по лицензированию и интерпретации полученных результатов. Одной из основных задач мы видим в пропаганде возможностей метода, внедрение его в сегодняшних непростых условиях в медицинскую практику. В России и странах СНГ уже работают десятки лабораторий, поставленных ЗАО "ВСМ".
Суммируя преимущества использования тест-систем на основе метода ПЦР, необходимо отметить:
1. Метод позволяет обнаруживать патогенные для человека бактерии и вирусы в тех случаях, когда другими способами это сделать невозможно.
2. Для диагностики практически всех известных в настоящее время заболеваний может быть использован один набор приборов и незначительно отличающиеся для разных инфекций наборы реактивов, что обусловлено химическим сродством нуклеиновых кислот. Появляется возможность создания для многих биологических жидкостей и возбудителей создания универсальной процедуры приготовления пробы, выделения ДНК и постановки реакции.
3. Отпадает необходимость в средах, клеточных культурах, узкой специализации медицинского персонала. ПЦР-диагностикумы дают возможность избежать проблем, связанных с перекрестно реагирующими антигенами.
4. Возможен анализ серонегативных пациентов на самых ранних стадиях инфекционного процесса, когда лечение наиболее эффективно.
5. Легко определяются патогенные возбудители, для которых не разработаны или затруднены методы культивирования, а также для персистирующих форм патогенных бактерий.
6. Метод позволяет поставить надежный диагноз в течение рабочего дня, т. е. за 6—8 ч.
7. Метод обладает высокой чувствительностью (до 1—5 копий возбудителя в пробе) и специфичностью (различают серологические штаммы).
8. Проведение анализа возможно в минимальном объеме пробы: обычно несколько микролитров.
9. Возможна одновременная диагностика нескольких возбудителей заболеваний в одной пробе.
10. Стоимость одного анализа при использовании отечественных приборов и реактивов сопоставима со стоимостью одного анализа иммуноферментным методом.
В настоящее время ученые разных стран мира прилагают усилия для дальнейшего развития метода ПЦР:
упрощения и автоматизации анализа, возможности синтеза больших фрагментов нуклеиновых кислот, расширения приложений метода.
Метод полимеразной цепной реакции (ПЦР) имеет крайне высокую аналитическую чувствительность и позволяет идентифицировать патогенные микроорганизмы на любом филогенетическом уровне. Это обусловило его широкое применение в диагностике возбудителей инфекционных заболеваний с/х животных. В то же время высокая 'чувствительность метода при неправильном его использовании может привести к снижению специфичности ПЦР-анализа. Главной проблемой здесь является случайный перенос (контаминация) следовых количеств ДНК активной в ПЦР (специфических продуктов амплификации ДНК - «ампликонов», положительного контрольного образца, ДНК клинического образца, содержащего возбудитель) в реакционную пробирку, не содержащую возбудитель и как следствие появление ложноположительных результатов ПЦР.
Сотрудники практической ПЦР-лаборатории в своей работе сталкиваются с двумя основными видами контаминации:
1) перекрестная контаминация от пробы к пробе (в процессе обработки клинических образцов или при раскапывании реакционной смеси), приводящая к появлению спорадических ложно-положительных результатов;
2) контаминация продуктами амплификации (ампликонами), имеющая наибольшее значение, поскольку в процессе ПЦР ампликоны накапливаются в огромных количествах и являются идеальными продуктами для реамплификации.
Необходимо также указать еще на две, часто встречающиеся, Причины контаминации. Одна из них связана с тем, что вблизи или даже в самом помещении, предназначенном для ПЦР, производится параллельная микробиологическая диагностика одноименных возбудителей инфекций или оба вида анализа выполняются одними и теми же сотрудниками. При этом контаминирущим материалом может стать ДНК, получаемых в больших количествах в процессе микробиологического наращивания возбудителей.
В научно-исследовательских учреждениях, занятых в разработке ПЦР-методик или организациях производящих ПЦР-тест-системы к вышеперечисленным источникам контаминации, может добавится контаминация рекомбинантными плазмидами, содержащими фрагменты генов мишеней для ПЦР, изготовляемых в качестве положительных контрольных образцов.
Среди всех вариантов контаминации наиболее часто встречающимся является контаминация «ампликонами» посуды, автоматических пипеток и лабораторного оборудования, поверхностей лабораторных столов или поверхности кожи сотрудников лаборатории, что приводит к появлению систематических ложноположительных результатов.
Как правило, выявление; источника контаминации представляет, собой трудоемкую задачу, требующую- затрат времени и средств.
Накопленный к настоящему моменту опыт работы ведущих лабораторий ПЦР-дигностики инфекций позволяет сформулировать основные требования к планировке помещений и правила проведения самих анализов. Строгое соблюдение данных требований значительно снижает риск контаминации и получения ложноположительных результатов.
Планировка помещений и основные принципы организации работы ПЦР-диагностичвских лабораторий
1). Лаборатория должна быть разделена на зоны или комнаты для каждой из стадий ПЦР-диагностики. Следует иметь не менее двух комнат:
- ПЦР-помещение, где выделяются Зона 1 - для проведения обработки клинических образцов и Зона 2 - для приготовления реакционной ПЦР-смеси и внесения выделенных проб ДНК (при наличии условий Зону 1 и Зону 2 рекомендуется организовать в разных комнатах);
- в ПЦР-помещений запрещается проводить все другие виды работ с инфекционными агентами (микробиологический анализ, ИФА, и т.д.), ПЦР-диагностика которых проводится в данной лаборатории.
- пост-ПЦР-помещение, где проводится детекция продуктов амплификации;
- в пост-ПЦР-помещении допускается использовать другие методы детекции инфекций, диагностика которых проводится в данной лаборатории.
2). Комнату детекции продуктов амплификации (пост-ПЦР-помещение) следует располагать как можно дальше от ПЦР-помещений.
3). Следует исключить движение воздушного потока из пост-ПЦР в ПЦР-помещения.
4). Обработка клинических образцов должна производиться в ламинарном шкафу или настольном ПЦР-боксе, снабженном ультрафиолетовыми лампами.
5). Работа в лаборатории должна быть организована в одном направлении: ПЦР-помещений к пост-ПЦР-помещению.
6). Каждое помещение ПЦР-диагностической лаборатории должно иметь свой набор реагентов, автоматических пипеток, наконечников, пластиковой и стеклянной посуды, лабораторного оборудования, халатов и перчаток, используемых только в данном помещении и не выносящиеся в другие ПЦР-помещения. Оборудование, материалы и инвентарь в каждой комнате должны иметь соответствующую маркировку.
7). Следует однократно использовать перчатки как в комнате обработки клинических образцов, так и в комнате приготовления реакционной смеси и постановки ПЦР.
8). Необходимо однократно использовать пробирки и наконечники для автоматических пипеток. Обязательно менять наконечники при переходе от одной пробы к другой с целью предотвращения перекрестной контаминации в процессе выделения ДНК или при раскапывании реакционной смеси.
9). Целесообразно использовать наконечники для автоматических пипеток аэрозольным барьером (или наконечники с ватными фильтрами, приготовленными в помещении, в котором не ведутся работы с ДНК) при обработке клинических образцов, а также при внесении выделенной ДНК в реакционную пробирку.
10). Каждый сотрудник лаборатории должен иметь персональный набор автоматических пипеток и реагентов.
11). Клинические образцы должны храниться отдельно от реагентов.
12). Не следует использовать водяные бани, так как заполняющая их вода, просачиваясь в недостаточно плотно закрытые пробирки, может стать источников контаминации; следует использовать суховоздушные термостаты.
13). При исследовании материала зараженного или подозрительного на зараженность возбудителями инфекционных заболеваний I-IV групп, работа должна проводиться с соблюдением "Санитарных правил СП 1.2.011-94 (Безопасность работы с микроорганизмами 1-II групп патогенности)" и "Положения о порядке учета, хранения, обращения, отпуска и пересылки культур бактерий, вирусов, риккетсий, грибов, простейших, микоплазм, бактерийных токсинов, ядов биологического происхождения", М.,1980.
14). Необходимо постоянно поддерживать чистоту на рабочем месте:
- каждое помещение должно иметь свой отдельный набор инвентаря для обработки и уборки рабочего места (ватно-марлевые тампоны, пинцет, дезинфицирующий раствор и т.д.), и источники ультрафиолетового излучения, которые эффективно инактивируют ДНК-матрицы.
- при манипуляциях с клиническим материалом рабочую поверхность до и после исследования обрабатывают дезинфицирующим раствором (указанным для данного возбудителя).
- следует обрабатывать рабочую поверхность в комнате приготовления реакционной смеси до работы с целью борьбы с пылью.
15). Следует полностью исключить проведение в ПЦР-диагностической лаборатории работ, связанных с получением (клонированием) и выделением рекомбинантных плазмид, содержащих последовательности ДНК или фрагментов генов возбудителей которые диагностируются данной лаборатории.
16). Персонал, работающий в ПЦР-диагностической лаборатории должен пройти соответствующее обучение.
Требования к проведению ПЦР-анализа
Обработка клинических образцов
1). Забор клинических образцов необходимо производить только одноразовые стерильные пластиковые пробирки или в стеклянные пробив предварительно обработанные в течение 1 часа хромовой смесью, тщател промытые дистиллированной водой и прокаленные.
2). Работать только в одноразовых перчатках.
3). Необходимо использовать одноразовые наконечники для автоматичес пипеток с аэрозольным барьером.
4). Обязательно менять наконечники при перехода от одной пробы к другой
5). Использованные пробирки и наконечники повторно не используются, должны сбрасываться в одноразовые контейнеры или в специальную емкость с раствором соляной кислоты.