АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Стеклоиномерные цементы

Прочитайте:
  1. B. Кальций-салицилатные цементы химического отверждения.
  2. А — слуховые рецепторы; Б, В — слуховая проекционная область; Д — пищевой центр; Е — двигательные цементы коры; Ж — подкорковые двигательные аппараты.
  3. Бактерицидные и модифицированные цементы
  4. СТЕКЛОИОНОМЕРНЫЕ ЦЕМЕНТЫ
  5. Стеклоиономерные цементы
  6. Стеклоиономерные цементы, Состав свойства, техника приготовления и пломбирования.
  7. ХЕЛАТНЫЕ ЦЕМЕНТЫ
  8. Цементы
  9. Цементы для обтурации корневых каналов (силлеры)

Стеклоиономерные цементы (СИЦ, стеклоиономеры, полиалкенатные, стеклополиалкенатные цементы) сочетают в себе низкую токсичность, высокую прочность и удовлетворительные эстетические характеристики, а также проявляют противокариозную активность. В последнее время интерес стоматологов к этой группе пломбировочных материаловвозрастает. СИЦ могут применяться при наложении как базовых, так и тонкослойных (лайнерных)изолирующих прокладок, постоянных пломб, а также для фиксации несъемных ортопедических конструкций и т.д.

Следует отметить, что более правильным и соответствующим требованиям международного стандарта (ISO) является название стеклополиалкенатные цементы. Однако, учитывая сложившуюся в отечественной литературе терминологию, в пособии эти материалы будут называться стеклоиономерными цементами (СИЦ).

Спектр выпускаемых в настоящее время стеклоиономерных цементов позволяет успешно решать большинство задач практической стоматологии, учитывая при этом не только свойства материалов, но и индивидуальные предпочтения врача, финансовые возможности пациента, материальную и кадровую оснащенность лечебного учреждения.

«Классический» стеклоиономерный цемент представляет собой систему «порошок/жидкость». Порошок — кальций-алюмосиликатное стекло с добавлением фторидов (до 23%). Жидкость — раствор поликарбоновых кислот: полиакриловой, полиитаконовой и полималеиновой.

В процессе отверждения цемента происходит поперечное сшивание молекул полимерных кислот ионами алюминия и кальция, экстрагированными из стекла. При этом образуется трехмерная пространственная структура полимера, а на поверхности непрореагировавших частиц стекла (в процессе отверждения происходит химическое превращение 20—30% стекла) образуется оболочка из силикагеля (см. рис. 189).

Таким образом, окончательная структура отвердевшего цемента представляет собой частицы стекла, окруженные силикагелем, и расположенные в полимерном матриксе из поперечносвязанных поликарбоновых кислот (см. рис. 190).

 

Основные положительные свойства СИЦ:

1. Химическая адгезия к тканям зуба. Химическое связывание СИЦ с эмалью и дентином происходит за счет хелатного соединения карбоксилатных групп полимерной молекулы кислоты с кальцием твердых тканей зуба (рис. 191). При этом не требуется кислотного протравливания и абсолютной сухости поверхности. В то же время следует помнить, что сила адгезии стеклоиономерных цементов к эмали и дентину относительно невысока (2—7 МПа). Поэтому наличие химической связи с твердыми тканями зуба имеет значение не столько для прочности соединения, сколько для обеспечения непроницаемости по линии контакта пломбировочного материала с твердыми тканями зуба (Виденко Н.В., 1999). Стеклоиономерным цементам следует отдавать предпочтение при некариозных поражениях твердых тканей зубов. Это связано с тем, что при данной патологии происходит изменение структуры эмали и дентина, и адгезивные системы композитом, рассчитанные па нормальное строение этих тканей, часто оказываются малоэффективными.

Важным с практической точки зрения является и тот факт, что за счет хелагных и водородных связей, стеклоиономерные цементы образуют химическую адгезию с композитами, нержавеющей сталью, ставами юлота и платины, оксидированной фольгой, а также материалами, содержащими)вгенол.

Кроме того, важным преимуществом стеклоиономер-ных цементов является то, что на заключительной стадии твердения происходит небольшое увеличение объема цементной массы. Это обеспечивает более плотное краевое прилегание пломбы (см. рис. 192).

 

2. Антикариозная активность обеспечивается за счет пролонгированного выделения фтора из цементной массы в окружающую среду. Этот процесс начинается сразу после пломбирования и продолжается не менее одного года. Диффузия фтора в окружающие ткани вызывает усиление их минерализации, образование фторанатитов в эмали и дентине, прилежащих к пломбе. Это приводит к повышению кислотоустойчивости и уменьшению проницаемости дентина, ухудшению условий жизнедеятельности патогенных микроорганизмов, предупреждению развития рецидивного кариеса. Установлено, что бактериальная обсемененность поверхности пломб из СИЦ значительно ниже, чем пломб из ципк-фосфатных, поликарбоксилатных цементов и композитов. Выделение фтора стеклоиономерными цементами значительно превосходит выделение фгора компомерами и композитами, содержащими фтор. Кариесстатический эффект стеклоиономерных цементов подтвержден рядом экспериментальных и клинических исследований. Кроме того, установлено, что стеклоиономерные цементы обладают так называемым батарейным эффектом. Они способны адсорбировать ионы фтора при контакте из фторсодержащих зубных паст и эликсиров, продуктов питания, средств экзогенной профилактики (рис. 193, 194). При закислении среды, окружающей зуб («кариесогенной ситуации»), стеклоиономеры выделяют фтор в прилегающие ткани.

Именно поэтому применение стеклоиономерных цементов особенно показано у пациентов с тяжелым течением кариеса зубов, «проблемной» полостью рта (низкий уровень гигиены, высокий показатель КПУ, высокая частота рецидивного кариеса).

3. Достаточная механическая прочность и эластичность. Стеклоиономерные цементы имеют высокую прочность на сжатие. Кроме того, они имеют низкий модуль упругости (модуль Юнга), т.е. высокую эластичность. Эти свойства позволяют им выдерживать окклюзионные нагрузки под пломбами, вкладками и коронками. В какой-то мере стеклоиономеры способны компенсировать полимеризационную усадку композитов, а также напряжения, возникающие в пришеечной области при микроизгибах зуба в процессе жевания. Кроме того, коэффициент температурного расширения СИЦ близок к коэффициенту температурного расширения тканей зуба (табл. 20), что важно для обеспечения долговременной герметичности на границе «пломба / ткани зуба».

 

4. Удовлетворительные эстетические свойства делают стеклоиономерные цементы материалом выбора в тех клинических ситуациях, когда применение композита по какой-либо причине невозможно.

5. Высокая биологическая совместимость, нетоксичность и отсутствие раздражающего действия на пульпу зуба. В экспериментальных исследованиях установлено, что СИЦ обладают более мягким действием на пульпу зуба, чем цинкоксидэвгенольные и цинк-фосфатные цементы. Одна из наиболее вероятных причин этого — высокий молекулярный вес полиакриловой кислоты: из-за большого размера молекула не может диффундировать через дентин и оказывать раздражающее действие. Высокая биосовместимость СИЦ позволяет применять их без изолирующих прокладок или в качестве прокладочного материала при лечении среднего кариеса, однако, при глубоком кариесе необходимо использование лечебной прокладки на основе гидроксида кальция (Биден-ко Н.В., 1999).

6. Простота применения. Этот фактор является немаловажным при лечении детей, в геронтостоматологичес-кой практике, а также в других ситуациях, когда пациент физически не может неподвижно сидеть с открытым ртом длительное время, необходимое для выполнения всех требований «композитной технологии». Кроме того, простота наложения пломбы из стеклоиономера делает этот материал незаменимым при лечении кариеса и герметизации фиссур зубов в условиях, исключающих использование композитов, компомеров и полимерных фиссурных герметиков: в школьных стоматологических кабинетах, в отдаленных сельских районах, на выездной санационной работе при лечении кариеса зубов с применением ART-методики.

7. Относительно невысокая стоимость (по сравнению с композитами). Невысокая цена при вполне удовлетворительном качестве пломб делает стеклоиономерные цементы основными материалами при оказании «бесплатной» стоматологической помощи малообеспеченным слоям населения, при наложении пломб па зубы с сомнительным прогнозом (например, при тяжелой форме пародонтита), при пломбировании молочных зубов и т.д.

В го же время, необходимо подчеркнуть, что «классические» стеклоиономерные цементы имеют ряд недостатков, ограничивающих их клиническое применение определенными рамками и требующих от врача выполнения ряда условий и технических приемов.

Недостатками «классических» стеклоиономерных являются:

1. Длительность «созревания» цементной массы. Несмотря на то, что первичное отверждение материала происходит в течение 3—6 минут, окончательное «созревание» цементной массы длится в течение суток. Только через 24 часа материал становится малочувствительным к внешним воздействиям. Поэтому в первые сутки после наложения «классический» стеклоиономерный цемент имеет ряд «слабых мест» (табл. 21).


А. Чувствительность к избытку или недостатку влаги в процессе отверждения. Избыток влаги в процессе отверждения цементной массы приводит к вымыванию ионов алюминия и нарушению формирования трехмерной пространственной структуры полимера. Пересушивание твердеющего цемента ведет к нарушению процесса диссоциации полимерной кислоты и уменьшает выход ионов металлов из частиц стекла, в результате этого протекание химической реакции отверждения цемента также нарушается. В обоих случаях физико-механические и химические свойства материала ухудшаются. Поэтому пломбу из стеклоиономерного цемента сразу после наложения рекомендуется покрывать изолирующим лаком. Защита от влаги должна действовать не менее одного часа. Именно столько времени необходимо, чтобы достигнуть уровня ионов, достаточного для оптимального отверждения цемента.

Б. Чувствительность к внешним механическим воздействиям в процессе «созревания». Установлено, что механические воздействия, особенно вибрация при обработке борами и абразивными инструментами, может нарушать образование химической связи между цементом и структурами зуба. Это приводит к нарушению герметичности на границе пломба/зуб, появлению микроподтеканий и, как следствие, — неудовлетворительному результату пломбирования. Поэтому после наложения пломбы из «классического» стеклоиономерного цемента, излишки материала рекомендуется срезать острым скальпелем, покрыть пломбу изолирующим лаком, а окончательное шлифование и полирование провести в следующее посещение, не ранее, чем через 24 часа.

В. Чувствительность к механическим воздействиям и вибрации в процессе «созревания» цементной массы выражается в том, что если «несозревшую» пломбу из стеклоиономера обработать вращающимися инструментами (борами, абразивными или полировочными головками), то за счет микровибраций, которые неизбежно возникают при работе наконечника, нарушаются химические связи стеклоиономерной гель-матрицы с твердыми тканями зуба. В результате этого химического соединения пломбы с тканями зуба не происходит, адгезия и краевое прилегание пломбы ухудшаются, и врач-стоматолог пе получает того клинического результата, на который рассчитывал. В связи с этим, первичную обработку пломбы из «классического» стеклоиономера (удаление излишков, коррекция по высоте прикуса) рекомендуется производить ручными инструментами: скальпелями, карверами (заостренная гладилка), экскаваторами. Шлифование и полирование пломбы с использованием вращающихся обра-зивных инструментов следует проводить в следующее посещение.

Необходимо подчеркнуть, что некоторые современные «классические» стеклоиопомеры за счет совершенствования технологии производства менее чувствительны к внешним воздействиям в процессе «созревания» цементной массы. Например, пломбу из «Ketac Molar» (ЗМ ESPE) или «lonofil Molar» (VOCO) допускается обрабатывать борами и абразивными инструментами уже через 5—7 минут после наложения. Хотя, по нашему мнению, лучше это делать через 24 часа.

Г. Вероятность нарушения химического состава и процесса отверждения при протравливании «несозревшей» цементной массы фосфорной кислотой. Фосфорная кислота, как известно, является более активным химическим реагентом по сравнению с полимерными кислотами, используемыми в стеклоиономерных цементах. Поэтому при кислотном протравливании поверхности «несозревшего» СИЦ существует большая опасность вытеснения полимерной кислоты из реакции, что неизбежно приведет к нарушению процесса отверждения СИЦ и изменению его свойств.

Д.Опасность раздражающего действия на пульпу при глубоких полостях. Установлено, что свежезамешанный СИЦ при наложении на дно глубокой кариозной полости может вызывать осмотическую травму одонтоблас-тов, появление повышенной чувствительности, а иногда даже некроз пульпы. Поэтому, как уже отмечалось выше, при пломбировании глубоких кариозных полостей использование лечебной прокладки на основе гидрокси-да кальция является необходимым.

2. Более низкие, чем у композитных материалов, прочностные характеристики. Особенно значительно стекло-иономеры уступают композитам по таким параметрам, как прочность на диаметральное растяжение, прочность на излом, устойчивость к истиранию. В связи с этим нецелесообразно использование СИЦ в полостях, где материал испытывает значительные разнонаправленные нагрузки: при восстановлении режущего края или бугра зуба, при пломбировании с парапульпарными штифтами. Пломбирование стеклоиономерным цементом оправдано, если пломба со всех сторон окружена достаточно толстым слоем твердых тканей зуба. В то же время, не следует пломбировать стеклоиономерными цементами полости I класса по Блеку в постоянных зубах, гак как в них пломба подвержена повышенному абразивному износу.

3. Недостаточная эстетичность. По эстетическим характеристикам стеклоиономерные цементы значительно уступают современным композитным материалам. Основные недостатки стеклоиономеров как материалов для эстетической реставрации зуба: высокая опаковость (непрозрачность) и недостаточная полируемость. Поэтому в настоящее время эти цементы в эстетической стоматологии применяются лишь как вспомогательный материал, например, для маскировки цветовых пятен, металлических штифтов и т.д. Исключение составляют те случаи, когда применение композита по какой-либо причине невозможно. Однако рассчитывать на отличный эстетический результат при применении одного только стеклоиономера не следует.

В настоящее время продолжается процесс модернизации стеклоиономерных цементов. Одно из основных направлений исследований в этой области — совершенствование механизма отверждения СИЦ направлено на улучшение манипуляцион-ных свойств, физико-химических и эстетических характеристик материалов этой группы. За тридцать лет разработок, которые не прекращаются и в настоящее время, было создано несколько групп стеклоиономерных цементов (табл. 22).

В аква-цементах (т.е. замешиваемых на воде) порошок содержит алюмосиликатное стекло и лиофилизированную полиакриловую кислоту, жидкость — дистиллированная вода. При смешивании порошка с водой происходит растворение полиакриловой кислоты, и начинается реакция отверждения цемента. Применение аква-цементов позволяет обеспечивать оптимальное соотношение «стекло-кислота», облегчает замешивание.

В то же время, порошки этих цементов активно поглощают водяные пары из воздуха, изменяя при этом свои первоначальные свойства. Поэтому порошок следует хранить плотно закрытым и помещать на блок для смешивания непосредственно перед использованием. Обычно, чтобы избежать нежелательной гидратации цементного порошка, фирмы-производители помещают в пузырек капсулу с влагопог-лотителем (силикагелем).

Кроме того, аква-цементы имеют все те же недостатки, что и «классические» СИЦ.

«Классические» СИЦ и стеклоиономерные цементы, замешиваемые на воде, называют истинными стеклоиономерными цементами.

Принципиально новым направлением совершенствования СИЦ явилось включение в их состав светоотверждаемой полимерной смолы. Химический состав этих цементов обеспечивает образование прочных связей между полимерной и стеклоиономерной матрицами, что позволяет получить прочную, гомогенную цементную массу. Такие материалы обычно называются гибридными стеклоиономерными цементами, резинцементами или стеклоиономерами, модифицированными полимером.

Первыми представителями этой группы материалов были гибридные стеклоиономерные цементы двойного отверждения. Как следует из названия, они имеют два механизма отверждения:

1. Под влиянием света активирующей лампы происходит быстрая «композитная» реакция отверждения полимерной матрицы; в результате создается плотный полимерный каркас, который обеспечивает прочность и стабильность материала на начальном этапе твердения.

2. Сразу после смешивания порошка и жидкости начинается типичная для стеклоиономеров медленно протекающая химическая реакция отверждения, длящаяся около 24 часов. При этом стеклоиономерная матрица соединяется с полимерной.

Гибридные стеклоиономерные цементы менее чувствительны к влаге и дегидратации, обладают улучшенными прочностными характеристиками, твердеют без образования микротрещин, имеют повышенную силу сцепления с тканями зуба.

Обращаем внимание на то, что полимерная матрица гибридных стеклоиономеров двойного отверждения твердеет только под действием света активирующей лампы. Поэтому эти материалы не пригодны для фиксации коронок, колпачков, внутриканальных штифтов и т.д. Кроме того, чтобы обеспечить полноценную фотополимеризацию всех участков пломбы, гибридные стеклоиономерные цементы двойного отверждения должны наноситься и полимеризоваться слоями толщиной не более 2 мм.

Чтобы устранить эти недостатки, компанией «ЗМ ESPE» был создан гибридный стеклоиономерный цемент тройного отверждения «Vitremer». Этот материал имеет три механизма отверждения:

1) световое отверждение полимерной матрицы — немедленное отверждение при светооблучении позволяет уже в процессе работы добиться высокой прочности, обеспечивает удобство в использовании, снижает возможность загрязнения;

2) химическое отверждение полимерной матрицы обеспечивается содержанием в порошке микрокапсул с патентованной каталитической системой. При замешивании цемента капсулы разрушаются, и происходит активация катализатора. Возможность химической полимеризации материала без светооблучения гарантирует оптимальное отверждение всех участков пломбы. Таким образом, отпадает необходимость послойного наложения материала. Одномоментное наложение пломбы даже большого объема пошоляет получить однородную структуру и значительно экономит время;

3) стеклоиономерпая реакция отверждения, длящаяся в течение суток внутри прочною полимерного «каркаса» обеспечивает химическую адгешю, биосовместимосп», пролонгированное выделение фюра, а, следовательно, — высокое качество реставрации и уменьшение вероятности развития рецидивного кариеса.

Применение механизма тройного отверждения позволило значительно увеличить прочность «Витремера», уменьшить его полимеришционную усадку, расширить показания к применению. До настоящего времени «Витремер» остается единственным стеклоиономерным цементом тройного отверждения.

Так называемые однокомпонентные светоотверждаемые СИЦ имеют полимерную матрицу, твердеющую под действием света, и стеклоиопомерный наполнитель. Однако при их отверждении происходит лишь реакция фотополимеризации полимера, сгеклоиопомерной реакции в них не происходи!, и, следовательно, химической связи с тканями зуба не образуется, ионообменные реакции, приводящие к насыщению окружающих тканей ионами фтора, выражены очень слабо. В связи с этим относить эти материалы к стеклоиономерным цементам, по нашему мнению, вряд ли корректно. Скорее — это светоотверждаемые полимерные материалы со стеклоиономерным наполнителем.

Классификация современных стеклоиономерных цементов.

В настоящее время наиболее распространенной и общепринятой является классификация стеклоиономерных цементов, построенная на основе классификации J.McLean (1988):


Тип I — СИЦ для фиксации.

Тип II — Восстановительные СИЦ для постоянных пломб:

а) эстетические;
б) упроченные;
в) конденсируемые.

Тип III — Быстротвердеющие СИЦ:

а) для прокладок;
б) фиссурные герметики.


Дата добавления: 2015-02-06 | Просмотры: 1730 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.007 сек.)