Краткая медицинская характеристика последствий облучения. Понятие об острой и хронической лучевой болезни
Все живое на Земле находится под непрерывным воздействием ионизирующих излучений. Нужно различать два компонента радиационного фона: естественный фон и порожденный деятельностью человека — техногенный фон.
Человек постоянно подвергается воздействию так называемого естественного радиационного фона, который обусловлен космическим излучением и природными радиоактивными веществами, содержащимися в земле, воде, воздухе и всей биосфере. При естественном фоне от 10–15 мкР/ч до 26–30 мкР/ч человек за год может получить дозу 0,1–0,3 бэр.
Надо отметить, что на протяжении многих миллионов лет развития растительного и животного мира естественная радиация сыграла большую положительную роль.
Фоновое облучение было побудителем всего эволюционного процесса на Земле, без его воздействия развитие биоты оказалось бы невозможным (Кузьмин A.M., 1979–1997); важную роль играла не только передача информации, но и изменчивость организмов, которая происходила под действием радиации.
Техногенный фон обусловливается работой АЭС, урановых рудников, использованием радиоизотопов в промышленности, сельском хозяйстве, медицине и других отраслях народного хозяйства. Среднегодовая доза облучения человека за счет техногенного фона составляет примерно 2–3 мЗв (0,2–0,3 бэр).
Таким образом, за счет естественного и техногенного фона средняя годовая доза облучения человека составляет приблизительно 3–4 мЗв (0,3-0,4 бэр) в год.
Международная комиссия по радиационной защите (МКРЗ) разработала предельно допустимые дозы облучения, принятые в Нормах радиационной безопасности 1999г. (НРБ–99):
Ø для персонала (профессиональных работников) — лиц, которые постоянно или временно непосредственно работают с источниками ионизирующих излучений, — 20 мЗв (2 бэр) в год в среднем за любые последовательные 5 лет, но не более 50 мЗв (5 бэр) в год;
Ø для населения, включая лиц из персонала вне сферы условий производственной деятельности, — 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв (0,5 бэр) в год.
Считается, что профессиональные работники за время трудовой деятельности могут получить облучение до 1 Зв (100 бэр). Для добровольцев по ликвидации последствий радиационной аварии допускается однократное облучение до 100 мЗв (10 бэр) в год с разрешения территориальных органов здравоохранения (санэпиднадзора).
Внутреннее облучение организма происходит от радиоактивных веществ, поступающих с пищей, водой, воздухом (40К, 210Ро). Наибольшая часть дозы излучения, формируемой от земных источников, обусловлена радоном, который, высвобождаясь из земной коры и строительных материалов (гранита, железобетона и др.), может проникать в помещения и при недостаточной вентиляции накапливаться в них.
Увеличение радиоактивного фона, выходящее за пределы естественных природных колебаний, может приводить к неблагоприятным влияниям на человека, повышая риск развития генетических нарушений и злокачественных новообразований.
Среди эффектов, возникающих после облучения и тесно связанных с его дозой, различают два вида: соматические и наследственные. Соматические наблюдаются у самого облученного, а наследственные — у его потомков.
Соматические эффекты могут быть двух видов: детерминированные (ранее называвшиеся нестохастическими) и стохастические (вероятностные).
Соматодетерминироваппые проявления облучения зависят от индивидуальной дозы облучения и имеют пороговый характер, то есть они неизбежно возникают у данного индивидуума при достижении дозы облучения определенного порогового уровня. К ним относятся острая или хроническая лучевая болезнь, местные радиационные поражения, алопеция (в отечественной литературе часто используется термин эпиляция), катаракта, гипоплазия щитовидной железы (при инкорпорации радиоактивного йода), пневмосклероз и др.
21 Для действующих предприятий (объектов) эти нормы введены с 01.01.2000. Раньше предельно допустимая доза для персонала составляла 5 бэр в год.
На основании имеющихся клинических и экспериментальных данных установлено, что облучение в дозе до 0,01 Гр (1 рад) может рассматриваться как «вклад» дополнительного облучения в естественный фон. Воздействие на организм излучений в пределах до 0,01 Гр в год или 0,7 Гр за всю жизнь не оказывает влияния на такие показатели, как продолжительность жизни, рождаемость, частота заболеваний наследственного характера.
Соматостохастические эффекты относятся к поздним отдаленным проявлениям облучения. Вероятность их развития рассматривается как беспороговая функция дозы облучения. Среди них различают новообразования, возникающие у облученных, и наследственные дефекты — у их потомков.
Оценка стохастических эффектов облучения возможна только при проведении статистического анализа данных обследования больших групп облученных, поскольку их возникновение связано не только с радиационным фактором.
В основе стохастических проявлений — как новообразований, так и генетических дефектов — лежат вызванные облучением мутации клеточных структур. При этом мутации соматических клеток различных тканей могут привести к развитию новообразований, а в половых клетках (яичниках, семенниках) — к ранней гибели эмбрионов, спонтанным выкидышам, мертворождениям, наследственным заболеваниям у новорожденных. Наиболее характерными стохастическими заболеваниями, возникающими после облучения, являются лейкозы.
Кроме лейкозов, облучение индуцирует развитие злокачественных новообразований в различных органах.
Генетические нарушения проявляются изменениями двух типов:
I - хромосомными аберрациями, включающими изменения числа или структуры
хромосом;
II - мутациями в самих генах.
Частота наследственных дефектов не поддается точному прогнозированию. Предположительно доза облучения в 1 Гр, полученная при низкой мощности излучения, индуцирует появление от 1000 до 2000 мутаций, приводящих к наследственным дефектам, и от 30 до 1000 хромосомных аберраций на миллион живых новорожденных.
Генные мутации ведут к гибели зиготы, что приводит к ранней смерти эмбрионов, спонтанным выкидышам, мертворождениям, порокам развития и наследственным заболеваниям у живорожденных. Большинство поврежденных клеток с хромосомными аномалиями элиминируется, а мутации передаются из поколения в поколение и могут быть причиной соматических нарушений.
К основным особенностям биологического действия ионизирующего излучения относятся:
Ø отсутствие субъективных ощущений и объективных изменений в момент контакта с излучением;
Ø наличие скрытого периода действия;
Ø несоответствие между тяжестью острой лучевой болезни и ничтожным количеством первично пораженных клеток;
Ø суммирование малых доз;
Ø генетический эффект (действие на потомство);
Ø различная радиочувствительность органов (наиболее чувствительна, хотя и менее радиопоражаема, нервная система, затем органы живота, таза, грудной клетки);
Ø высокая эффективность поглощенной энергии;
Ø тяжесть облучения зависит от времени получения суммарной дозы (однократное облучение в большой дозе вызывает более выраженные последствия, чем получение этой же дозы фракционно);
Ø влияние на развитие лучевого поражения обменных факторов (при снижении обменных процессов, особенно окислительных, перед облучением или во время него уменьшается его биологический эффект).
Дозы ионизирующего излучения, не приводящие к острым радиационным поражениям, к снижению трудоспособности, не отягощающие сопутствующих болезней, следующие:
Ø однократная (разовая) — 50 рад (0,5 Гр);
Ø многократные: месячная — 100 рад (1 Гр), годовая — 300 рад (3 Гр).
Отличительной особенностью структуры поражений, возникающих при радиационных авариях, является их многообразие, что связано с большим числом вариантов складывающихся радиационных ситуаций.
Структура радиационных аварийных поражений представлена следующими основными формами заболеваний:
Ø острая лучевая болезнь от сочетанного внешнего у-, р- излучения (у-нейтронного) и внутреннего облучения;
Ø острая лучевая болезнь от крайне неравномерного воздействия у-излучения;
Ø местные радиационные поражения (у, Р);
Ø лучевые реакции;
Ø лучевая болезнь от внутреннего облучения;
Ø хроническая лучевая болезнь от сочетанного облучения.
Острая лучевая болезнь (ОЛБ). Современная классификация острой лучевой болезни основывается на твердо установленной в эксперименте и в клинике зависимости тяжести и формы поражения от полученной дозы облучения (табл.13).
Таблица 13
Дата добавления: 2014-12-11 | Просмотры: 775 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 |
|