АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Введение. К классу оксидоредуктаз относят ферменты, катализирующие окислительно–восстановительные реакции

Прочитайте:
  1. D. если перед введением антигена провести десенсибилизацию
  2. I. Введение
  3. I. Введение
  4. I. Введение
  5. I. Введение
  6. I. ВВЕДЕНИЕ
  7. I. ВВЕДЕНИЕ.
  8. I. Токсические реакции на введение анестезирующих препаратов
  9. А. Введение
  10. А. Введение

К классу оксидоредуктаз относят ферменты, катализирующие окислительно–восстановительные реакции. Общая схема их может быть представлена следующим образом:

оксидоредуктаза

Субстрат + Акцептор ¾¾¾¾¾¾¾¾¾¾¾> Субстрат + Акцептор

АН2 В <¾¾¾¾¾¾¾¾¾¾¾ А ВН2

 

Характерной особенностью деятельности оксидоредуктаз в живой клетке является их способность образовывать системы (так называемые цепи окислительно–восстановительных ферментов), в которых осуществляется многоступенчатый перенос атомов водорода или электронов от первичного субстрата к конечному акцептору, которым является, как правило, кислород, так что в результате образуется вода.

Другая особенность оксидоредуктаз состоит в том, что, будучи двухкомпонентными ферментами с весьма ограниченным набором активных групп (коферментов), они способны ускорять большое число самых разнообразных окислительно–восстановительных реакций. Это достигается за счет того, что один и тот же кофермент способен соединяться со многими апоферментами (белками), образуя каждый раз оксидоредуктазу, специфическую по отношению к тому или иному субстрату или акцептору.

Еще одна, пожалуй, главная особенность оксидоредуктаз заключается в том, что они ускоряют протекание химических процессов, связанных с высвобождением энергии. Последняя используется как для обеспечения синтетических процессов в организме, так и для других нужд.

Оксидоредуктазы, которые переносят атомы водорода или электроны непосредственно на кислородные атомы, носят название аэробных дегидрогеназ или оксидаз. В отличии от них оксидоредуктазы, переносящие атомы Н или электроны от одного компонента окислительной цепи ферментов к другому без передачи их на кислородные атомы, называют анаэробными дегидрогеназами или редуктазами.

Подклассы оксидоредуктаз определяются типами соединений, выступающих в качестве доноров электронов. Например, ферменты подкласса 1 катализируют окисление гидроксигрупп до карбонильных, подкласса 2 - окисление карбонильных до карбоксильных и т.д.

В отдельные подклассы выделены ферменты (оксигеназы), катализирующие реакции введения атомов кислорода - одного, подкласс 14 (монооксигеназы) - двух, подкласс 13 (диоксигеназы) из молекулы О2.

В данном методическом указании рассмотрены более подробно строение и механизм действия оксидоредуктаз, имеющих важное значение в процессах технологической переработки пищевого сырья и при его хранении. Не менее важна роль этих ферментов в процессах дыхания живых организмов, окисления органических соединений - углеводов, липидов, белков, снабжающих клетку энергией.

 

1 НАД+- зависимые дегидрогеназы

Ферменты, катализирующие реакции окисления-восстановления с участием никотинамидадениндинуклеотида (НАД+), или его близкого аналога - никотинамидадениндинуклеотидфосфата (НАДФ+).

Более половины известных в настоящее время оксидоредуктаз содержат НАД+ или НАДФ+ в качестве кофермента, т.е являются двухкомпонентными, их называют пиридинпротеином. Пиридинпротеины способны отнимать от субстратов (спирты, альдегиды, кетокислоты, амины и др.) и включать в молекулу НАД+ (НАДФ+) 2 электрона и один протон (гидрид ион Н-) (окисляя, таким образом, указанные соединения, а второй протон остается в среде, в результате чего утрачивается положительный заряд пиридинового цикла НАД+ (НАДФ+):

 

Н   Н Н
½   \ /
С O   С O
// \ //   / \ //
Н¾ С C ¾С- NH2   Н¾ С C ¾С- NH2
½ | |   | | | |
Н¾- С C- Н   Н¾- С C- Н
О \\ + /   О \ /
|| N   || N
НО-Р- О-СН2 О   НО-Р- О-СН2 О
½ NН2 +2Н   ½ NН2
½ Н Н ½   ½ Н Н ½
О Н ½ ½ Н N C [ 2Н+,2е; Н-, Н+] О Н ½ ½ Н N C
½ НО НО // \ / \\   ½ НО НО // \ / \\
НО-Р= О Н-C C N   НО-Р= О Н- C C N
½ ½ || ½   ½ ½ || ½
О-¾ СН2 О N¾¾C CН   О -¾ СН2 О N¾¾C CН
½ \ //   ½ \ //
½ Н Н N   ½ Н Н N
Н ½ ½ Н Н3РО4   Н ½ ½ Н Н3РО4
НО О(Н)   НО О(Н)

НАД+ (НАДФ+ ) НАДН (НАДФН)

 

Все пиридинпротеины являются анаэробными дегидрогеназами, т.е не передают снятые с субстрата атомы водорода на кислород, а передают их на ближайший в окислительной цепи другой фермент, как правило, флавопротеид.

Кофермент НАДФ+ является производным НАД+, у которого водород ОН - группы 2-го углеродного атома рибозы аденозина замещен на остаток фосфорной кислоты. Механизм окисления (своих субстратов) при участии НАДФ+ в качестве кофермента аналогичен таковому при посредстве НАД+.

Несмотря на то, что реакции, катализируемые НАД+ и НАДФ+ зависимыми ферментами - дегидрогеназами обратимы, их биологическое значение в большинстве случаев связано, преимущественно, с протеканием реакции в определенном направлении. При этом отчетливо проявляется такая закономерность: если биологически значимо окисление субстрата, то в реакции в качестве окислителя чаще всего участвуют НАД+ . Если же реакция этого подкласса имеет значение для восстановления какого - либо органического соединения, то чаще всего восстановителем является НАДФН.

 


Дата добавления: 2015-08-06 | Просмотры: 782 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)