АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Устройства (электронные приборы, элементы схем) на основе графена; «углеродная» электроника

Прочитайте:
  1. II. Первичные продуктивные элементы
  2. III. Вторичные элементы
  3. VII. Элементы ядерной физики и физики элементарных частиц
  4. Автор изобретения (патентообладатель) ищет деловых людей, которые могли бы заняться производством высокоэффективного устройства для лечения болезней позвоночника.
  5. В основе этой реакции лежит взаимодействие IgG, IgM или IgА с циркулирующими или тканевыми Аг с формированием иммунных комплексов, которые индуцируют воспаление.
  6. Греческие слова Терминоэлементы
  7. Греческие слова Терминоэлементы
  8. Греческие слова Терминоэлементы
  9. Греческие слова Терминоэлементы
  10. Греческие слова Терминоэлементы

В результате открытия Новосёлова и Гейма исследователи получили в свое распоряжение семейство новых углеродных наноструктур с необычным комплексом свойств. Наряду со стремительным исследованием физико-химических свойств, стал проводиться активный поиск возможного прикладного использования этих уникальных нанообъектов. Как было показано в предыдущих разделах, сочетание физических и химических свойств Г поистине уникально. При толщине в один атом, этот материал один из самых прочных, прозрачен и является отличным проводником при комнатной температуре. Однако всё это относится только к 1сГ, свойства всех остальных модификаций мало изучены и не достигают тех значений, которые приводятся для подвешенного однослойного графена. Каковы возможные применения этого материала?

Углеродная электроника; общие положения

Таким образом, из изложенного выше видно, что графен является самым тонким материалом и при этом, наиболее прочным, он совершенно прозрачен [185] и является отличным проводником с высокой подвижностью носителей тока при комнатной температуре. Графен устойчив при нагревании до довольно высоких температур. Так, при нагреве в аргоне до 400 оС структура графена остаётся неизменной, в то время как физические характеристики плавно меняются в соответствии с известными законами [42].

Вследствие этого имеется множество идей изготовления прозрачных графеновых электродов для светодиодов и солнечных батарей, а также ряд других интересных областей применения.

Однако наиболее революционной является идея создания полностью углеродной высокоскоростной электроники, где все элементы (элементная база) будут изготовлены на основе графена и его производных: активные и пассивные элементы, интегральные схемы, теплоотводящие подложки, проводники, полупроводники различных типов, транзисторы, переключатели и т.п. Считается, что дешевые и гибкие полностью углеродные интегральные схемы на основе графена можно будет производить с помощью интенсивно разрабатываемой в настоящее время нанолитографии [186] и принтерной технологии. В то же время, на пути создания безкремниевой полностью углеродной электроники стоит ряд проблем. Необходимо научиться делать протяжённые бездефектные плёнки однослойного графена на гибких полимерных подложках. Имеющиеся экспериментальные результаты показывают, что сделать это не просто. Например, на сегодняшний день можно получить устойчивую дисперсию однослойного графена в ряде растворителей и использовать её в качестве чернил для печати наноэлектронных устройств. Однако проводимость и подвижность зарядов таких материалов будет на порядки ниже, чем у подвешенного однослойного графена. Несмотря на это, многие авторы выражают уверенность в возможности создания полностью углеродной наноэлектроники. Как шаг в этом направлении авторы [187] сообщают о разработанной ими технологии формирования электронных схем с использованием протяжённой графеновой плёнки, полученной методом spin-coating дисперсии графена в растворителях с последующей лазерной печатью без использования каких-либо масок. Для демонстрации возможностей этой технологии авторы создали работающий прототип гибкой ячейки памяти типа WORM (многократной записи и считывания); плотность записи 500 000 бит/см2 и это не предел + высокое быстродействие.

Полевые транзисторы на основе графена

Хотя проблема получения значительных количеств 1сГ пока ещё не решена, но тем не менее исследования в области построения электронных устройств на основе такого материала уже ведутся. Процессоры на кремниевых транзисторах выполняют определенное количество операций в секунду, сопровождающееся выделением большого количества тепла. В Г электроны перемещаются практически без сопротивления, выделяя при этом очень мало тепла. Помимо этого, Г – хороший тепловой проводник, что позволяет быстро рассеивать избыточное тепло. Из-за этих и других факторов электроника на основе Г, может работать на гораздо более высоких частотах. Поэтому графен рассматривается как перспективный материал для наноэлектроники несмотря на то, что у него ширина запрещенной зоны E g = 0 и поэтому он не может использоваться впрямую, например, для создания биполярных транзисторов с комнатной рабочей температурой; это ограничение, как будет показано ниже, не распространяется на полевые и одноэлектронные транзисторы.

На основе Г созданы первые лабораторные полевые транзисторы, которые, как предполагается, могут совершить прорыв в наноэлектронике [188]. Для изготовления транзистора несколько капель дисперсии, содержащей графеновые листы, наносили на кремниевую подложку, покрытую слоем SiO2 толщиной 200 нм, а также тонкими золотыми полосками, отстоящими друг от друга на расстоянии около 1 мкм. В результате испарения растворителя отдельные чешуйки графена попадали в промежуток между электродами, что приводило к образованию двухконтактного либо трехконтактного полевого транзистора; в качестве запирающего электрода использовалась тыльная сторона кремниевой пластины. Сообщается о создании действующего транзистрора на основе бислойного графена с высокими параметрами [189]. Более того, в дальнейшем было показано, что графен может быть использован для решения проблем терагерцевой электроники; так, сконструированный в [177, 190] на основе графена прибор представлял собой высокоскоростной (120 – 200 fs) транзистор, работающий с частотой 700 - 1400 GHZ.

Показано, что можно использовать графеновые островки небольших размеров в качестве основы одноэлектронных транзисторов [191], что открывает возможности для создания электронных устройств с использованием «квантовых точек» на основе графена.

Пути решения других проблем, возникающих в такого рода С - электронике можно найти в работах [192,193]. Таким образом, изложенные выше теоретические и экспериментальные результаты с несомненностью демонстрируют, что не существует принципиальных препятствий для создания полностью углеродной электроники.Особенности строения и свойств графенового листа открывают перед конструкторами электронных устройств такие возможности, которые невозможно было решать с использованием традиционных материалов современной электроники [194].

Сенсоры

Предложено [169] использовать Г в качестве очень чувствительного сенсора для обнаружения отдельных молекул в газовой фазе. Решению этой задачи способствуют такие привлекательные характеристики графенов, как термическая, механическая и химическая стабильность, а также высокая чувствительность электронных параметров к наличию молекул различного сорта, сорбированных на поверхности графенов. Как было показано в предыдущих разделах, принцип действия такого сенсора основан на изменении проводимости 1сГ при сорбции на его поверхности примесных молекул анализируемого газа. Указанная чувствительность определяет возможность разработки на основе графенов нового типа сенсоров, представляющих собой высокочувствительные датчики, способные регистрировать малейшие примеси определенных газов в атмосфере. Так, в [195]установлено, что электрические характеристики плёнок графена, подвергнутых термообработке при температуре 200 оС и выше, оказались весьма чувствительными к присутствию в атмосфере примесей NO2 на уровне нескольких десятков ppm.

Транзистор на основе подвешенного графеного листа может быть с успехом использован в растворе в качестве сенсора, в первую очередь, в качестве pH – датчика [196].


Другие применения

В ряде сообщений говорится о возможности использование Г как материала для создания гибких ЖК-дисплеев [197]. Сообщается о попытках создания экранов для жидкокристаллических дисплеев на основе плёнок графена на полимерных подложках; однако, пока что количество так называемых «битых пикселей» на графеновой плёнке превышает допустимое на порядок. В то же время сообщается, что можно создать жидко-кристаллические дисплеи с электродами из графена [197], не уступающими по характеристикам повседневным устройствам.

Еще одна перспективная область применения Г – изготовление на его основе электродов в суперконденсаторах (ионисторах) для использования их в качестве перезаряжаемых источников тока. Опытные образцы ионисторов на Г имеют удельную энергоёмкость 32 Вт·ч/кг, сравнимую с таковой для свинцово-кислотных аккумуляторов (30 − 40 Вт·ч/кг) [198].

Помимо этого, представляется возможным использование Г для создания мембран с регулируемой проницаемостью, анизотропных ионных проводников, сверхъярких светодиодов и эффективных солнечных батарей [199, 200].

Прозрачные электроды. Обычно в качестве таких электродов применяют оксид индия - олова (ITO). После открытия графена, появилась перспектива использования этого нового материала для создания прозрачных электродов. Первые эксперименты показали, что плёнка многослойного графена с прозрачностью 85 % имеет удельное сопротивление 200 Ом/см2 [57]См. также [201].

Прозрачность графена, наряду с его высокой проводимостью открывает возможность использовать его в качестве анода в светоизлучающих диодах. Показано, что замена ITO на графен позволяет создать светоизлучающий диод с характеристиками, практически не отличающими от аналога диода с ITO [202].

Проблема прозрачных для электронного пучка подложек в экспериментах с использованием ПЭМ стоит достаточно остро. В работе [203] показано, что чешуйки окиси графена можно использовать в качестве таких подложек и при энергии электрона 80 кВ можно получить высокое атомное разрешение различных субстратов на таких подложках.

На основе графена создан магнетометр [204].


Литература

1. M. S. Dresselhaus, P. T. Araujo. Perspectives on the 2010 Nobel Prize in Physics for Graphene. ASC Nano, 4, 11, 6297 - 6302 (2010).

2. А.С. Фиалков. Углерод, межслоевые соединения и композиты на его основе. – М.: Аспект Пресс, 1997.

3. А.Р. Убеллоде, Ф.А. Льюис. Графит и его кристаллические соединения. – М.: Мир, 1965.

4. D.D.L. Chung. Review graphite. J. of Mater. Sci., 37, 1475 - 1489 (2002).

5. Химическая энциклопедия. Кнунянц И.Л. (ред.). – М.: Сов. энцикл., 1998.

6. Энциклопедия «Современное естествознание». Сойфер В.Н. (ред.). – М.: Издательский дом Магистр–Пресс, 2002.

7. H. Selig, L.B. Ebert. Graphite intercalation compounds. Adv.Inorg.Chem. Radiochem., 23, 281 - 327 (1980).

8. T. Enoki, M. Suzuki, M. Endo. Graphite intercalation compounds and applications. Oxford: University Press, 433 (1930).

9. И.Г. Черныш, И.И. Карпов, В.П. Приходько, В.М. Шай. Физико-химические свойства графита и его соединений. – Киев: Наукова Думка, 1990с.

10. J. Lopez-Gonzalez, A. Martin-Rodriguez, F. Rodríguez-Reinoso. Kinetics of the formation of Graphite oxide. Carbon, 13, 6, 461 - 464 (1975).

11. C. Hontoria-Lycas, A.J. Lopez-Peinado, J. Lopez-Gonzalez D. De, M.L. Rojas-Cervantes, R.M. Martin-Avanda. Study of oxygen-containing groups in series of graphite oxides: physical and chemical characterization. Carbon, 33, 11, 1585 - 1592 (1995).

12. A. Herold, G. Furdin, D. Guerard, L. Hachim, N.E. Nadi, R. Vangelisti Some aspects of graphite intercalation compounds. Annales de Physique, 11, 2, 3 - 11 (1986).

13. G.R. Henning. Interstital compounds of graphite. Progr. In Inorg. Chem., 1, 125 - 205 (1959).

14. L.B. Ebert. Intercalation compounds of graphite. Ann. Rev. Mater. Sci., 6, 181 - 211 (1976).

15. N.L. Dzurus, G.R. Hennig. Graphite compounds. J.Am.Chem.Soc., 79, 1051 - 1054 (1957).

16. A. Мetrot, J.E. Fischer. Charge transfer reactions during anodic oxidation of graphite in H2SO4. Synt. Met., 3, 3, 201 - 207 (1981).

17. S. Aronson, S. Lemont, J. Weiner. Determination of the H2SO4:HSO4- and HC1O4:C1O4- ratios in graphite lamellar compounds. Inorg. Chem., 10, 6, 1296 - 1298 (1971).

18. R.J. Julietti, D.L. Riley. Determination of chlorine and sulphur in small samples of carbon and graphite. Second conference on industrial carbon and graphite. London.— Soc. Chem. Ind., 86 - 89 (1966).

19. В. Iskander, P. Vast. Etude par spectrometrie raman du materiau obtenu par trtion de Facide sulfurique dans le graphite. J. Ram. Spectros., 11, 4, 247 - 251 (1981).

20. В. В. Авдеев, Н. Е. Сорокина, О. А. Тверезовская, И. Ю. Мартынов, А. В. Сеземин. Синтез соединений внедрения с HNO3. Вестн. Моск. Ун-та., 40, 6, 422 - 425 (1999).

21. M. Inagaki. Graphite-nitrate residue compound with a smaller interlayer spacing than graphite. Carbon. 5, 3, 317-318 (1967).

22. M. Savoskin, A. Jaroshenko. New kinetic model for graphite nitrate hydrolyses. 9th International symposium on intercalation compounds ISIC-9., 1, 19 (1967).

23. M.J. Bottomley, G.S. Parry, A.R. Ubbelohde. Thermal expansion of some salts of graphite. Proc. Roy. Soc. (London), 279, 1378, 291 - 301 (1964).

24. M. Inagaki, T. Suwa. Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs. Carbon, 39, 915 - 920 (2001).

25. F. Kang, Y.-P. Zheng, H.-N. Wang, Y. Nishi, M. Inagaki. Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon, 40, 9, 1575 - 1581 (2002).

26. A. Celzard, S. Schneider, J.F. Mareche. Densification of expanded graphite. Carbon, 40, 12, 2185 - 2191 (2002).

27. M. Toyoda, M. Inagaki. Heavy oil sorption using exfoliated graphite. New application of exfoliated graphite to protect heavy oil pollution. Carbon, 38, 2, 199 - 210 (2000).

28. X. Chen, K. Song, J. Li, J. Liv. Preparation of lower-sulfur content and expandable graphite. Carbon, 34, 12, 1599 - 1603 (1996).

29. Ю.Д. Третьяков, Л.И. Мартыненко, А.Н. Григорьев, А.Ю. Цивадзе. Неорганическая химия. Химия Элементов. Книга II. – М.: Химия, 2001.

30. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang, S.-T. Lee. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed., 49, 26, 4430 – 4434 (2010).

31. H. Jiang, F. Chen, M. G. Lagally, F. S. Denes. New Strategy for Synthesis and Functionalization of Carbon Nanoparticles. Langmuir, 26, 3, 1991 – 1995 (2010).

32. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, S.-Y. Xie. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc., 128, 24, 7756 – 7757 (2006).

33. F. Wang, S. Pang, L. Wang, Q. Li, M. Kreiter, C.-Y. Liu. One-Step Synthesis of Highly Luminescent Carbon Dots in Noncoordinating Solvents. Chem. Mater., 22, 16, 4528 – 4530 (2010).

34. P. Avouris. Graphene: Electronic and Photonic Properties and Devices. Nano Lett., 10, 11, 4285 – 4294 (2010).

35. Sh. Wang, L.A. Tang, Q. Bao, M. Lin, S. Deng, B. M. Goh, K.P. Loh. Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets. J. Am. Chem. Soc., 131, 16832 – 16837 (2009).

36. C. H. Lui, L. Liu, K.F. Mak, G.W. Flynn, T.F. Heinz. Ultraflat graphene Nature, 462, 339 - 341 (2009).

37. X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong, Mauricio Terrones, Mildred S. Dresselhaus. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science, 323, 1701 - 1705 (2009).

38. Ç.Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, A. Zettl. Graphene at the Edge: Stability and Dynamics. Science, 323, 5922, 1705 - 1708 (2009).

39. M. Terrones. Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons. ACS Nano, 4, 4, 1775 - 1781 (2010).

40. R. K. Joshi, H. Gomez, F. Alvi, A. Kumar. Graphen films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions. J. Phys. Chem. C, 114, 6610 – 6613 (2010).

41. С. В. Ткачев, Е. Ю. Буслаева, С. П. Губин. Графен – новый углеродный наноматериал. Неорганические материалы 47, 1, 5 – 14 (2011).

42. A. Nourbakhsh, M. Cantoro, A. Klekachev, F. Clemente, B. Sore, M. H. van der Veen, T. Vosch, A. Stesmans, B. Sels, S. De Gendt. Tuning the Fermi Level of SiO2-Supported Single-Layer Graphene by Thermal Annealing. J. Phys. Chem. C, 114, 6894 – 6900 (2010).

43. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 5696, 666 - 669 (2004).

44. K. S. Novoselov, D. Jiang, F. Schedin, V. V. Khotkevich, S. V. Morozov, A. K. Geim. Two-dimensional atomic crystals. PNAS, 102, 30, 10451 - 10453 (2005).

45. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech., 3, 9, 563 – 568 (2008).

46. X. An, T. Simmons, R. Shah, Ch. Wolfe, K.M. Lewis, M. Washington, S.K. Nayak, S. Talapatra, S. Ka. Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications. Nano Lett., 10, 11, 4295 – 4301 (2010).

47. H. Yang, A. J. Mayne, M. Boucherit, G. Comtet, G. Dujardin, Y. Kuk. Quantum Interference Channeling at Graphene Edges. Nano Lett., 10, 3, 943 – 947 (2010).

48. J. Lu, J. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphitein Ionic Liquids. ACS NANO, 3, 8, 2367 – 2375 (2009).

49. M. Eizenberg, J.M. Blakely. Carbon monolayer phase condensation on Ni(111). Surf. Sci., 82, 1, 228 – 236 (1979).

50. T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, C. Oshima. Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys. Rev. Lett., 64, 7, 768 – 771 (1990).

51. A.Y. Tontegode. Carbon on transition metal surfaces. Progr. Surf. Sci., 38, 3 - 4, 201 - 429 (1991).

52. N.R. Gall, E.V. Rut’kov, A.Y. Tontegoge. Two Dimensional Graphite Films on Metals and Their Intercalation. Int. J. modern Phys. B., 11, 16, 1865 - 1911 (1997).

53. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim,... K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 7230, 706 – 710 (2009).

54. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett., 9, 1, 30 – 35 (2009).

55. Y. Lee, S. Bae, H. Jang, S. Jang. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Lett., 10, 2, 490 - 493 (2010)

56. X. Li, W. Cai, L. Colombo, R. S. Ruoff. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett., 9, 12, 4268 - 4272 (2009).

57. W. Cai, Y. Zhu, X. Li, R. D. Piner, R. S. Ruoff. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett., 95, 12, 123115 - 3 (2009).

58. J.-H. Gao, D. Fujita, M.-S. Xu, K. Onishi, S. Miyamoto. Unique Synthesis of Few-Layer Graphene Films on Carbon-Doped Pt83Rh17 Surfaces. ACS Nano, 4, 2, 1026 - 1032 (2010).

59. P.W. Sutter, J.I. Flege, E.A. Sutter. Epitaxial graphene on ruthenium. Nat. Mater., 7, 5, 406 - 411 (2008).

60. A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Lett., 10, 1542 – 1548 (2010).

61. M. K. Yakes, D. Gunlycke, J. L. Tedesco, P. M. Campbell, R. L. Myers-Ward, C. R. Eddy, D. K. Gaskill, P. E. Sheehan, A. R. Laracuente. Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interactions. Nano Lett., 10, 5, 1559 – 1562 (2010).

62. J. Robinson, X. Weng, K. Trumbull, R. Cavalero, M. Wetherington, E. Frantz, M. LaBella, Z. Hughes, M. Fanton, D. Snyder. Nucleation of Epitaxial Graphene on SiC(0001). ACS Nano, 4, 1, 153 – 158 (2010).

63. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer. Electronic Confinement and Coherence in Pattened Epitaxial Graphen. Science, 312, 5777, 1191 – 1196 (2006).

64. J. Hass, F. Varchon, J. Millán-Otoya, M. Sprinkle, N. Sharma,... W. D. Heer, C. Berger, P. First, L. Magaud, E. Conrad. Why Multilayer Graphene on 4H-SiC (000-1) Behaves Like a Single Sheet of Graphene. Phys. Rev. Lett., 100, 12, 125504 - 4 (2008).

65. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, T. Seyller. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater., 8, 203 - 207 (2009).

66. J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway, V. P. Mammana. Free-standing subnanometer graphite sheets. Appl. Phys. Lett., 85, 7, 1265 – 1267 (2004).

67. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett., 8, 7, 2012 - 2016 (2008).

68. J. Campos-Delgado, J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim, T. Hayashi, Z. Ren, D. J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus, M. Terrones. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett., 8, 9, 2773 – 2778 (2008).

69. Liu N., Luo F., Wu H. X. Y. Liu, Ch. Zhang, J. Chen. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater., 18, 10, 1518 – 1525 (2008)

70. C. Vall, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux and A. Penicaud. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc., 130, 47, 15802 – 15804 (2008).

71. X. Li, X. Wang, L. Zhang, S. Lee, H. Daio. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science., 319, 5867, 1229 – 1232 (2008).

72. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech., 3, 9, 538 – 542 (2008)

73. R. Hao, W. Qian, L. Zhang, Y. Hou. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem. Commun., 48, 6576 – 6578 (2008)

74. Worsley K. A., Ramesh P., Mandal S.K. N. Sandip, M.E. Itkis, R. Haddon. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett., 445, 1-3, 51 – 56 (2007).

75. Choucair M., Thordarson P., Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotech., 4, 1, 30 – 33 (2009).

76. Terrones. Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons. ACS Nano, 4, 4, 1775 – 1781 (2010).

77. W. S. Kim, S. Y. Moon, S. Y. Bang, B. G. Choi, H. Ham, T. Sekino, K. B. Shim. Fabrication of graphene layers from multiwalled carbon nanotubes using high dc pulse. Appl. Phys. Lett., 95, 8, 083 - 103 (2009).

78. K. Kim, A. Sussman, A. Zettl Graphene Nanoribbons Obtained by Electrically Unwrapping Carbon Nanotubes. ACS Nano, 4, 3, 1362 - 1366 (2010).

79. B.C. Brodie. Sur le poids atomique du graphite. Ann. Chim. Phys., 59, 466 - 472 (1860).

80. L. Staudenmaier. Verfahren zur Darstellung der Graphitsaure. Ber. Deut. Chem. Ges., 31, 1481 - 1499 (1898).

81. W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 6, 1339 - 1339 (1958).

82. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla. Atomic and Electronic Structure of Graphene-Oxide. NanoLett., 9, 3, 1058 - 1063 (2009).

83. C. Hontoria-Lucas, A.J. Lopez-Peinado, J. de D. Lopez-Gonzalez, M.L.. Rojas-Cervantes, R.M. Martin-Aranda. Study of oxygen-containing groups in series of graphite oxides: physical and chemical characterization. Carbon, 33, 11, 1585 - 1592 (1995).

84. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater., 18, 11, 2740 - 2749 (2006)

85. S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, R. S. Ruoff. Graphene oxide papers modified by divalent ions – Enhancing mechanical properties via chemical cross-linking. ACS Nano, 2, 3, 572 – 578 (2008).

86. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, R. S. Ruoff. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem., 16, 2, 155 – 158 (2006).

87. S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44, 15, 3342 – 3347 (2006).

88. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. M. D. Tascon. Graphene oxide dispersions in organic solvents. Langmuir, 24, 19, 10560 – 10564 (2008).

89. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleihammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 7, 1558 – 1565 (2007).

90. J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W.-F. Hwang, J. M. Tour. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc., 130, 48, 16201 – 16206 (2008).

91. V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner. High-throughput solution processing of large-scale graphene. Nature Nanotech., 4, 1, 25 – 29 (2008).

92. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C., 112, 22, 8192 – 8195 (2008).

93. A. V. Murugan, T. Muraliganth, A. Manthiram. Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage. Chem. Mater., 21, 21, 5004 – 5006 (2009).

94. Ch.D. Zangmeister. Preparation and Evaluation of Graphite Oxide Reduced at 220 0C. Chem. Mater., 22, 19, 5625 – 5629 (2010).

95. Lin, Y. Yao, Zh. Li, Y. Liu, Zh. Li, Ch.-P. Wong. Solvent-Assisted Thermal Reduction of Graphite Oxide. J. Phys. Chem. C, 114, 35, 14819 - 14825 (2010).

96. Y. Si, E. T. Samulski. Synthesis of water soluble graphene. Nano Lett., 8, 6, 1679 – 1682 (2008).

97. G. Williams, B. Serger, P. V. Kamat. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 8, 1487 – 1491 (2008).

98. D. Li, M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech., 3, 2, 101 – 105 (2008).

99. Y. Xu, H. Bai, G. Lu, Ch. Li and G. Shi. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc., 130, 18, 5856 – 5857 (2008)

100. S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.B.T. Nguyen, R.S. Ruoff. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater., 20, 21, 6592 – 6594 (2008).

101. R. Muszynski, B. Seger, P. V. Kamat. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C, 112, 14, 5263 – 5266 (2008).

102. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B., 110, 17, 8535 – 8539 (2006).

103. M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, I.A. Aksay. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater., 19, 18, 4396 – 4404 (2007).

104. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'Homme, L. C. Brinson. Functionalized graphene sheets for polymer nanocomposites. Nature Nanotech., 3, 6, 327 – 331 (2008).

105. Yang, X. Pan, F. Huang, K. Li. Fabrication of High-Concentration and Stable Aqueous Suspensions of Graphene Nanosheets by Noncovalent Functionalization with Lignin and Cellulose Derivatives. J. Phys. Chem. C, 114, 9, 3811 – 3816 (2010).

106. J. Gao, F. Liu, Y. Liu, N. Ma, Zh. Wang, X. Zhang. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chem. Mater., 22, 7, 2213 – 2218 2213 (2010).

107. H.P. Boehm, M. Eckel, W. Scholz. Uber den Bildungsmechanismus des Graphitoxids. Anorg. Allg. Chem., 353, 236 – 242 (1967).

108. C. Gomez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser. Atomic Structure of Reduced Graphene Oxide. Nano Lett., 10, 4, 1144 – 1148 (2010).

109. J. I. Paredes,S. Villar-Rodil, P. Solıs-Fernandez, A. Martınez-Alonso, J. M. D. Tascon. Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir, 25, 10, 5957 – 5968 (2009).

110. D. Pan, S. Wang, B. Zhao,M. Wu,H. Zhang,Y. Wang, Zh. Jiao. Li Storage Properties of Disordered Graphene Nanosheets. Chem. Mater., 21, 14, 3136 – 3142 (2009).

111. C. Gómez-Navarro, M. Burghard, K. Kern. Elastic Properties of Chemically Derived Single Graphene Sheets. Nano Lett., 8, 7, 2045 – 2049 (2008).

112. W. Kundhikanjana, K. Lai, H. Wang, H. Dai, M. A. Kelly, Z. Shen. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging. Nano Lett., 9, 11, 3762 – 3765 (2009).

113. T. Kamegawa, D. Yamahana, H. Yamashita. Graphene Coating of TiO2 Nanoparticles Loaded on Mesoporous Silica for Enhancement of Photocatalytic Activity. J. Phys. Chem. C, 114, 35, 15049 – 15053 (2010).

114. L. Gao, W. Ren, F. Li, H. M. Cheng. Total Color Difference for Rapid and Accurate Identification of Graphene. ACS Nano, 2, 8, 1625 – 1633 (2008).

115. E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samori, V. Palermo. High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching. J. Am. Chem. Soc., 131, 43, 15576 – 15577 (2009).

116. T. Gokus, R. R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, A. Hartschuh. Making Graphene Luminescent by Oxygen Plasma Treatment. ACSNano, 3, 12, 3963 – 3968 (2009).

117. A. C. Ferrari. Raman spectroscopy of graphene and graphite: Disorder, electron-photon coupling, doping and nonadiabatic effects. Solid state comm., 143, 1-2, 47 - 57 (2007).

118. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman Spectra of graphene and graphene layers. Phys. Rev. Lett., 97, 18, 187401 - 4 (2006).

119. C. C. Chen, W. Bao, J. Theiss, C. Dames, C. N. Lau, S. B. Cronin. Raman spectroscopy of ripple formation in suspended graphene. Nano lett., 9, 12, 4172 - 4176 (2009).

120. E. A. Obraztsova, A. V. Osadchy, E. D. Obraztsova, S. Lefrant, I. V. Yaminsky. Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers. Phys. stat. sol., B, 245, 10, 2055 – 2059 (2008).

121. E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, G. W. Flynn. High resolution scanning tunneling mesoscopic imaging of graphene sheets on an insulating surface. PNAS, 104, 22, 9209 - 9212 (2007).

122. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, R. Car. Raman spectra of graphene oxide and functionalized graphene sheets. Nano Lett., 8, 1, 36 - 41 (2008).

123. M. I. Katsnelson. Just Add Water. Science, 329, 5996, 1157 - 1158 (2010).

124. K. Xu, P. Cao, J. R. Heath. Graphene Visualizes the First Water Adlayers on Mica at Ambient Conditions. Science, 329, 5996, 1188 - 1191 (2010).

 

125. K. Geim, K. S. Novoselov. The Rise of Graphen. Nature Materials, 6, 3, 183 – 191 (2007).

126. Химическая энциклопедия. Кнунянц И.Л. (ред.). – М.: "Большая Российская энциклопедия", т. 2, 1990.

127. Wang, P. K. Ang, Z. Wang, A. L.L. Tang, J. T. L. Thong, K. P.Loh. High Mobility, Printable, andSolution-Processed Graphene Electronics. Nano Lett., 10, 92 - 98 (2010).

128. X. Du, I. Skachko, F. Duerr, A. Luican, E. Y. Andrei. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature, 462, 192 - 195 (2009).

129. K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, P. Kim Observation of the fractional quantum Hall effect in graphene. Nature, 462, 196 - 199 (2009).

130. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett., 8, 3, 902 – 907 (2008)

131. C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair, A. K. Geim. Thermal Conductivity of Graphene in Corbino Membrane Geometry. ACS Nano, 4, 4, 1889 – 1892 (2010).

132. Y.K. Koh, M.-H. Bae, D.G. Cahill, E. Pop. Heat Conduction across Monolayer and Few-Layer Graphenes. Nano Lett., 10, 11, 4363 - 4368 (2010).

133. J. S. Bunch, A. M. Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, P. L. McEuen. Electromechanical Resonators from Graphene Sheets. Science, 315, 5811, 490 – 493 (2007).

134. J.W. Suk, R.D. Piner, J. An, R.S. Ruoff. Mechanical Properties of Monolayer Graphene Oxide. ACSNano, 4, 11, 6557 - 6564 (2010).

135. L. Huang, G. V. Hartland, L.-Q. Chu, Luxmi, R. M. Feenstra, C. Lian, K. Tahy, H. Xing. Ultrafast Transient Absorption Microscopy Studies of Carrier Dynamics in Epitaxial Graphene. Nano Lett., 10, 4, 1308 – 1313 (2010)

136. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146, 351 – 355(2008).

137. Ch.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang,Ch.-H. Tsai, L.-J. Li. Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chem. Mater., 21, 23, 5674 – 5680 (2009)

138. M. Sprinkle, D. Siegel, Y. Hu, J. Hicks, A. Tejeda, A. Taleb-Ibrahimi, P. Le Fevre, F. Bertran, S. Vizzini,H. Enriquez, S. Chiang, P. Soukiassian, C. Berger, W. A. de Heer, A. Lanzara, E. H. Conrad. First Direct Observation of a Nearly Ideal Graphene Band Structure. PRL, 103, 22, 226803 - 4 (2009).

139. K. Kim, H. J. Park, B.-C. Woo, K. J. Kim, G. T. Kim, W. S. Yun. Electric Property Evolution of Structurally Defected Multilayer Graphene. Nano Lett., 8,10, 3092-3096 (2008).

140. Y.-M. Lin, P. Avouris. Strong Suppression of Electrical Noise in Bilayer Graphene Nanodevices. Nano Lett., 8, 8, 2119 - 2125 (2008).

141. M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, S. Tarucha. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nature Nanotech., 4, 383 - 388 (2009).

142. H. Zhou,C. Qiu,Zh. Liu,H. Yang, L. Hu,J. Liu, H.Yang,Ch. Gu, L. Sun. Thickness-Dependent Morphologies of Gold on N-Layer Graphenes. J. Am. Chem. Soc., 132, 3, 944 – 946 (2010).

143. L. Liu, S. Ryu, M.R. Tomasik,E. Stolyarova,N. Jung, M.S. Hybertsen, M.L. Steigerwald, L. E. Brus, G.W. Flynn. Graphene Oxidation: Thickness-Dependent Etching and Strong Chemical Doping. Nano Lett., 8, 7, 1965 – 1970 (2008).

144. Y. Xu, L. Zhao, H. Bai, W. Hong, Ch. Li, G. Shi. Chemically Converted Graphene Induced Molecular Flatteningof 5, 10, 15, 20 - Tetrakis (1-methyl-4- pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) Ions. J. Am. Chem. Soc., 131, 37, 13490 – 13497 (2009).

145. A. Chunder, T. Pal, S.I. Khondaker, L. Zhai. Reduced Graphene Oxide/Copper Phthalocyanine Composite and Its Optoelectrical Properties. J. Phys. Chem. C, 114, 35, 15129 – 15135 (2010).

146. J. Choi, H. Lee, K-J. Kim, B. Kim, S. Kim. Chemical Doping of Epitaxial Graphene by Organic Free Radicals. J. Phys. Chem. Lett., 1, 2, 505 – 509 (2010).

147. E. R. Margine, M.-L. Bocquet, X. Blasé. Thermal Stability of Graphene and Nanotube Covalent Functionalization. Nano Lett., 8, 10, 3315 - 3319 (2008).

148. C. E. Hamilton, J. R. Lomeda, Z. Sun, J.M. Tour, A.R. Barron. High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Lett., 9, 10, 3460 – 3462 (2009).

149. A. Sinitskii,A. Dimiev, D. A. Corley, A.A. Fursina, D.V. Kosynkin, J.M. Tou. Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons. ACS Nano, 4, 4, 1949 – 1954 (2010).

150. S. Niyogi, E. Bekyarova, M.E. Itkis, H. Zhang, K. Shepperd, J. Hicks, M. Sprinkle, C. Berger, Ch.N. Lau, W.A. deHeer, E.H. Conrad, R.C. Haddon. Spectroscopy of Covalently Functionalized Graphene. Nano Lett., 10, 10, 4061 – 4066 (2010).

151. R. Sharma, J. H. Baik, C. J. Perera, M. S. Strano. Anomalously Large Reactivity of Single Graphene Layers and Edges toward Electron Transfer Chemistries. Nano Lett., 10, 2, 398 - 405 (2010).

152. G T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, F. Mauri. Clar’s Theory, π-Electron Distribution, and Geometry of Graphene Nanoribbons. J. Am. Chem. Soc., 132, 10, 3440 – 3451(2010).

153. Y. Zhu, A. L. Higginbotham, J. M. Tour. Covalent Functionalization of Surfactant-Wrapped Graphene Nanoribbons. Chem. Mater., 21, 21, 5284 – 5291(2009).

154. M. Jahan, Q. Bao, J.-X. Yang, K. P. Loh. Structure-Directing Role of Graphene in the Synthesis of Metal-Organic Framework Nanowire. J. Am. Chem. Soc., 132, 41, 14487 – 14495 (2010).

155. D.D. Elias, R.R. Nair, T.M. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 323, 5914, 610 - 613 (2009).

156. R. Balog, B. Jørgensen, J. Wells, E. Lægsgaard, P. Hofmann, F. Besenbacher, L. Hornekær. Atomic Hydrogen Adsorbate Structures on Graphene. J. Am. Chem. Soc., 131, 25, 8744 – 8745 (2009).

157. Y. Matsumoto, M. Morita, S.Y. Kim, Y. Watanabe, M. Koinuma, Sh. Ida. Photoreduction of Graphene Oxide Nanosheet by UV-light Illumination under H2// Chem. Lett., 39, 7, 750 - 752 (2010).

158. S. B. Bon, L. Valentini, R. Verdejo, J. L. G. Fierro, L. Peponi, M. A. Lopez-Manchado, J. M. Kenny. Plasma Fluorination of Chemically Derived Graphene Sheets and Subsequent Modification With Butylamine. Chem. Mater., 21, 14, 3433 – 3438 (2009).

159. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, E. S. Snow. Properties of Fluorinated Graphene Films. Nano Lett., 10, 8, 3001 – 3005 (2010).

160. P. Kim, L. Bru. Charge Transfer Chemical Doping of Few Layer Graphenes: Charge Distribution and Band Gap Formation. Nano Lett., 9, 12, 4133 –4 137, (2009)

161. E.H. Fort, P.M. Donovan, and L.T. Scott. Diels-Alder Reactivity of Polycyclic Aromatic Hydrocarbon Bay Regions: Implications for Metal-Free Growth of Single-Chirality Carbon Nanotubes. J. Am. Chem. Soc., 131, 44, 16006 – 16007 (2009)

162. J. Liu, Y. Wang, Sh. Xu, D.D. Sun. Synthesis of graphene soluble in organic solvents by simultaneous ether-functionalization with octadecane groups and reduction// Materials Letters, 64, 20, 2236 – 2239 (2010).

163. H. He, Ch. Gao. General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry. Chem. Mater., 22, 17, 5054 - 5064 (2010).

164. Y. Cui, S.N. Kim, Sh.E. Jones, L.L. Wissler, R.R. Naik, M.C. McAlpine. Chemical Functionalization of Graphene Enabled by Phage Displayed Peptides. Nano Lett., 10, 4559 – 4565 (2010).

165. Sh. Hou, M.L. Kasner, Sh. Su, K. Patel, and R. Cuellari. Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene. J. Phys. Chem. C, 114, 35 14915 - 14921 (2010).

166. Z. Lin, Y. Liu, and Ch.-p. Wong. Facile Fabrication of Superhydrophobic Octadecylamine-Functionalized Graphite Oxide Film. Langmuir, 26, 20 16110 - 16114 (2010).

167. Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, J. N. Coleman. Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery. Langmuir, 26, 5, 3208 – 3213 (2010).

168. Ch.-Jen Shih, Sh. Lin, M.S. Strano, D. Blankschtein. Understanding the Stabilization of Liquid-Phase-Exfoliated Graphene in Polar Solvents: Molecular Dynamics Simulations and Kinetic Theory of Colloid Aggregation. J. Am. Chem. Soc., 132, 41, 14638 - 14648 (2010).

169. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov.Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 6, 9, 652 – 655 (2007).

170. O. Akhavan, E. Ghaderi. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano, 4, 10, 5731 - 5636 (2010).

171. J. H. Warner, M. H. Rummeli, A. Bachmatiuk, M. Wilson, B. Buchner. Examining Co-Based Nanocrystals on Graphene Using Low-Voltage Aberration- Corrected Transmission Electron Microscopy. ACS Nano, 4, 1, 470 - 476 (2010).

172. H. Wang, J. T. Robinson, G. Diankov, H. Dai. Nanocrystal Growth on Graphene with Various Degrees of Oxidation. J. Am. Chem. Soc., 132, 10, 3270 - 3271 (2010).

173. P.V. Kamat. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. J. Phys. Chem. Lett., 1, 2, 520 – 527 (2010).

174. S. Guo, S. Dong, E. Wang. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano, 4, 1, 547 – 555 (2010).

175. T.V. Cuong, V.H. Pham, J.S. Chung, E.W. Shin, D.H. Yoo, S.H. Hahn, J.S. Huh, G.H. Rue, E.J. Kim, S.H. Hur, P.A. Kohl. Solution-processed ZnO-chemically converted graphene gas sensor. Materials Letters, 64, 22, 2479 - 2482 (2010).

176. S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, R. S. Ruoff. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett., 9, 4, 1593 – 1597 (2009).

177. Y. Tang, J. Gou. Synergistic effect on electrical conductivity of few-layer graphene/multi-walled carbon nanotube paper. Materials Letters, 64, 22, 2513 - 2516 (2010).

178. V. Lee, L. Whittaker,Ch. Jaye, K.M. Baroudi, D. A. Fischer, S. Banerjee. Large-Area Chemically Modified Graphene Films: Electrophoretic Deposition and Characterization by Soft X-ray Absorption Spectroscopy. Chem. Mater., 21, 16, 3905 – 3916 (2009).

179. X. Zhao, Q. Zhang, D. Chen. Enhanced Mechanical Properties of Graphene-Based poly(vinyl alcohol) Composites. Macromolecules, 43, 12, 2357 – 2363(2010)

180. M.A. Rafiee, J. Rafiee, Zh. Wang, H. Song, Zh.-Zh. Yu, N. Koratkar. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano, 3, 12, 3884 – 3890 (2009)

181. Zh. Li, Z. Cheng, R. Wang, Q. Li, and Y. Fang. Spontaneous Formation of Nanostructures in Graphene. Nano Lett., 9, 10, 3599 – 3602 (2009)

182. Q. Wu, Y. Xu, Zh. Yao, A. Liu, and G. Shi. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano, 4, 4, 1963 – 1970 (2010)

183. K. Zhang, L. Zhang, X. S. Zhao, J. Wu. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater., 22, 4, 1392 – 1401 (2010).

184. D. Yu, L. Dai. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. J. Phys. Chem. Lett., 1, 2, 467 – 470 (2010).

185. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano, 4, 1, 43 – 48 (2010).

186. L. Weng, L. Zhang, Y.P. Chen, L. P. Rokhinson. Atomic Force Microscope Local Oxidation Nanolithography of Graphene. Appl. Phys. Lett., 93, 9, 093107 - 3 (2008).

187. J. Liang, Y. Chen, Y. Xu, Z. Liu, L. Zhang, X. Zhao, X. Zhang, J. Tian, Y. Huang, Y. Ma, F. Li. Toward All-Carbon Electronics: Fabrication of Graphene-Based Flexible Electronic Circuits and Memory Cards Using Maskless Laser Direct Writing. ACS Appl Mater Interfaces, 2, 11, 3310 – 3317 (2010).

188. Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, Ph. Avouris. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science, 327, 5966, 662 (2010).

189. F. Xia, D. B. Farmer, Y-M. Lin, P. Avouris. Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Lett., 10, 2, 715 - 718 (2010)

190. L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Qu†, Y. Huang, X. Duan. Sub-100 nm Channel Length Graphene Transistors. Nano Lett., 10, 10, 3952 - 3956 (2010).

191. C. Stampfer, E. Schurtenberger, F. Molitor, J. Guttinger, T. Ihn, K. Ensslin. Tunable Graphene Single Electron Transistor. Nano Lett., 8, 8, 2378 – 2383 (2008).

192. D.B. Farmer, H.-Y. Chiu, Y.-M. Lin, K.A. Jenkins, F. Xia, Ph. Avouris. Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors. Nano Lett., 9, 12, 4474 – 4478 (2009).

193. Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim,and Ph. Kim. Tuning the Graphene Work Function by Electric Field Effect. Nano Lett., 9, 10, 3430 – 3434 (2009).

194. X. L. Liu, D. Hug, L. M. K. Vandersypen. Gate-defined graphene double quantum dot and excited state spectroscopy. Nano Lett., 10, 5, 1623 – 1627 (2010).

195. G. Lu, L. E. Ocola, J. Chen. Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett., 94, 8, 083111 - 3 (2009).

196. Z. Cheng, Q. Li, Z. Li, Q. Zhou, Y. Fang. Suspended Graphene Sensors with Improved Signal and Reduced Noise. Nano Lett., 10, 5, 1864 – 1868 (2010).

197. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D.J.iang,F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov. Graphene-Based Liquid Crystal Device. Nano Lett., 8, 6, 1704 – 1708 (2008).

198. S.R. Vivekchand, Ch.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao. Graphene-based electrochemical supercapacitors. J. Chem. Sci., 120, 1, 9 − 13 (2008).

199. P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, N. D. Robinson. Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices. ACS Nano, 4, 2, 637 – 642 (2010).

200. A. V. Titov, R. Pearson. Sandwiched Graphene-Membrane Superstructures. ACS Nano, 4, 1, 229 – 234 (2010).

201. J. Geng, L. Liu, S.B. Yang, S.-Ch. Youn, D.W. Kim, J.-S. Lee, J.-K. Choi, and H.-T. Jung. A Simple Approach for Preparing Transparent Conductive Graphene Films Using the Controlled Chemical Reduction of Exfoliated Graphene Oxide in an Aqueous Suspension. J. Phys. Chem. C, 114, 34, 14433 - 14440 (2010).

202. J. Wu, M. Agrawal, H.A. Becerril, Zh. Bao, Z. Liu, Y. Chen, and P. Peumans. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano, 4, 1, 43 – 48 (2010).

203. N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Zh. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan. Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano, 3, 9, 2547 – 2556 (2009)

204. S. Pisana, P.M. Braganca, E.E. Marinero, and B.A. Gurney. Tunable Nanoscale Graphene Magnetometers. Nano Lett., 10, 1, 341 - 346 (2010)

 

 


Дата добавления: 2015-09-27 | Просмотры: 1045 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.052 сек.)