АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Цитологические изменения
Падение уровня кислорода в миокарде при острой окклюзии сосуда приводит к быстрому переходу от аэробного обмена к анаэробному, гли-колитическому. Поскольку окисление жиров и продуктов гликолиза в митохондриях становится невозможным, синтез макроэргических фосфатов резко снижается, а анаэробный гликолиз ведет к накоплению лакта-та. Снижение рН обусловливает уменьшение податливости и сократимости миокарда уже через 2 минуты после окклюзии сосуда. При отсутствии лечения через 20 минут развивается необратимое повреждение клеток, проявляющееся набуханием митохондрий, краевым расположением ядерного хроматина, дефектами мембраны и истощением запасов гликогена.
В течение нескольких минут содержание АТФ в клетке падает, так как его продукция в результате гликолиза далеко не обеспечивает потребности в нем. Недостаток АТФ подавляет активность трансмембранной Ка+/К+-АТФазы, в результате чего повышаются уровни внутриклеточного Na+ и внеклеточного К+. Повышение Na+ усугубляет отек клетки. Дефекты мембраны и повышение внеклеточного К+ приводят к изменению трансмембранного потенциала, создавая условия для возникновения фатальных аритмий (см. главу 11).
Во время ишемии внутри клетки в результате ряда причин накапливается Са++; к этим причинам относятся: 1) активация Na+/ Са++-ионообмен-ного насоса вследствие повышения концентрации Na+ внутри клетки, 2) просачивание Са++ из саркоплазматического ретикулума в цитозоль и 3) изменения в работе потенциалзависимых Са++-каналов и Са++-АТФазы. Вследствие прогрессирующей деструкции клеточной мембраны Са++, поступающий из экстрацеллюлярного пространства, не может быть удален нормальными энергозависимыми механизмами, что отражает переход от обратимого к необратимому повреждению клеток. Высокая внутриклеточная концентрация ионов Са++ считается единым конечным механизмом, приводящим к деструкции клеток миокарда липазами и протеазами.
Тяжелые дефекты клеточных мембран возникают вследствие недостатка макроэргических фосфатов, потери эндогенных антиоксидантов и продукции свободных радикалов нейтрофилами. Протеолитические ферменты, просачивающиеся из некротизированных миоцитов, повреждают соседний миокард; некоторые макромолекулы, попадающие в кровоток, являются диагностическими маркерами острого инфаркта (см. ниже).
В течение 4-12 часов, по мере роста проницаемости сосудов под действием медиаторов воспаления и повышения онкотического давления в интерстиции (вследствие просачивания туда внутриклеточных белков), развивается отек миокарда. Наиболее ранним гистологическим изменением, характерными для необратимого повреждения, является волнистость миофибрилл, которая возникает в результате интерстициального отека и «растягивания» в разные стороны кардиомиоцитов под действием сокращений окружающего миокарда. По краю инфарктной зоны часто видны пояски сокращения: сократившиеся и консолидированные саркомеры выглядят как яркие эозинофильные полоски.
Приблизительно через 4 часа начинается воспалительный ответ на повреждение, включающий инфильтрацию нейтрофилами, продуцирующими токсичные свободные радикалы, усугубляющими повреждение ткани. Через 18—24 часа при световой микроскопии видны такие признаки коагуляционного некроза, как кариопикноз и слабо выраженная эозинофилия цитоплазмы. Эти ранние изменения представлены в таблице 2.
Таблица 2.
Дата добавления: 2015-12-16 | Просмотры: 529 | Нарушение авторских прав
|