Примечание. В таблице нуль целых и запятая опущены.
Когда известны х и т, то по таблице 15 находим, что при х = = 0,4 и т = 3 вероятность появления трех уродов Ртз = 0,0072. Вероятность появления двух уродов — Ртг = 0,0536, одного — Ргщ = 0,2681 и отсутствие уродов — Рто = 0,6703.
Трансгрессивные рады. Они характеризуются тем, что две или несколько кривых вариационных рядов лежат не отдельно, а заходят в большей или меньшей части друг на друга. Если два трансгрессивных ряда объединить и построить вариационную кривую, то обычно образуется двухвершинная кривая (рис. 33). В данном примере она указывает на то, что бурые латвийские и джерсейские помесные коровы различаются по содержанию жира в молоке, но часть животных имеет одинаковую жирномолочность.
Бывают случаи, когда сильно различающиеся трансгрессивные ряды не обнаруживают двухвершинности. Чем больше трансгрессия, тем более сходны два вариационных ряда. Если
Рис. 33. Двухвершинная кривая распределения по содержанию жира в молоке коров одного хозяйства, построенная без учета их породы, и кривые распределения по каждой из двух пород в отдельности (по О. А. Ивановой, 1974):
/ — по всему стаду; 2 — помеси с джерсейской породой; 3 — коровы бурой латвийской породы
3,4 3,6 4,0 4,6 5,0 5,4 5,8 ЖИРНОСТЬ МОЛОКА, %
трансгрессия отсутствует, то кривые не соприкасаются друг с другом.
При изучении изменчивости нельзя объединять в одну группу животных разных пород, неодинакового возраста, выращенных в различных условиях среды и т. д.
КРИТЕРИЙ ХИ-КВАДРАТ (у2)
При анализе результатов скрещивания организмов исследователь почти всегда сталкивается с положением, когда фактическое расщепление в большей или меньшей степени отличается от теоретически ожидаемого. Поэтому возникает необходимость оценить степень соответствия фактических данных теоретически ожидаемым. Это достигается путем вычисления критерия соответствия х2 и сравнением полученной величины с табличным значением (с учетом числа степеней свободы). Критерий х2 является положительной величиной и изменяется от нуля до бесконечности. Если х2= 0) то наблюдается полное соответствие фактического расщепления теоретически ожидаемому. С увеличением разности между эмпирическими и теоретическими частотами возрастает величина х2, и при превышении определенного табличного значения различия, между фактическим и теоретическим расщеплением будут достоверными. При сравнении достоверности разности между двумя и более группами для изучения влияния определенных факторов в изменчивости признаков наряду с дисперсионным и другими методами применяется и более простой критерий хи-квадрат. Критерий х2 также используют для изучения связи между признаками (особенно имеющими качественные градации). Однако х2 указывает не на степень связи, а только на ее наличие или отсутствие. Критерий х2 вычисляют по формуле
..?. V (О~Е)2
где О — фактически наблюдаемая величина; Е — теоретически (гипотетически) ожидаемая величина.
Число степеней свободы при использовании хи-квадрата. При
оценке нормального и биномиального распределения из числа
классов вариационного ряда вычитается 2 или 3. Если фактическое итеоретическое распределение совпадают но двум параметрам (х и л), то v = л — 2, а если по трем (х, я, а), то v = л — 3. При четырех (2 х 2) и многопольных таблицах (2 х 3, 2 х 4 и т. д.) используют формулу
где г — число горизонтальных строк; с — число вертикальных столбцов.
При распределении Пуассона v = п — 2. При изучении полиморфизма белков число степеней свободы равно числу феноти-пических классов минус число аллелей. При скрещиваниях число степеней свободы равно числу фенотипических классов минус единица. Так, если расщепление по фенотипу 3: 1 или 9:7, TOV — 2 — 1 = 1, если расщепление 1:2:1, tov = 3 — 1 = 2, при расщеплении 9:3:3:1 v = 4 — 1 = 3.
Определим степень соответствия фактического распределения семейств по количеству больных туберкулезом коров теоретически ожидаемому, которое было вычислено при рассмотрении биномиального распределения. Данные приведены в таблице 16.