Зависимость смачивания от свойств твёрдой поверхности
Влияние шероховатости
Реальные подложки не бывают гладкими. У них имеются наноразмерные выступы. Из-за этого реальная площадь шероховатой поверхности несколько больше идеально гладкой. Отношение Ωш/Ω0=k называется коэффициентом шероховатости. Для многих твёрдых поверхностей (для полированных, шлифованных) k=1,05-1,15. Поэтому, сопоставив с законом Юнга, имеем:
cosθш=kcosθ (1)
Уравнение (1) называется уравнением Винцеля-Дирягина. Из него следует, что для смачиваемых жидкостей (cosθ>0) шероховатость приводит к уменьшению краевых углов (cosθш>cosθ). А в случае несмачивания – наоборот. Характерный пример – ворсинки на перьях водоплавающих птиц значительно увеличивают шероховатость их поверхности; это способствует тому, что перья практически не смачиваются водой.
Влияние химической неоднородности поверхности
Рассмотрим случай, когда твёрдрая поверхность представляет собой мозаику, состоящую из небольших участков 2 типов А и В. φ – доля площади, занимаемая веществом А, (1-φ) – доля В. Удельная поверхностная энергия твёрдого тела на границе с газом σтг и со смачиваемой жидкостью σтж состоит из вкладов поверхностных энергий каждого материала. Тогда из уравнения Юнга получим уравнение для краевых углов (θII) для неоднородной бинарной поверхности:
cosθII=φcosθA+(1-φ)cosθB (1)
Где θA и θB – краевые углы данной жидкости на однородных твёрдых поверхностях А и В соответственно.
Уравнение (1) называется уравнением Ребиндера-Кассье. Оно показывает, что по краевым углам можно получить информацию о химическом составе поверхностей, например из отношения площадей, занимаемых полярными и неполярными группами на поверхности биополимеров.
Влияние деформации
Дата добавления: 2015-10-11 | Просмотры: 820 | Нарушение авторских прав
|