Последние десятилетия характеризуются интенсификацией производственных процессов в промышленном и сельском хозяйстве. В результате этого в окружающей среде — воздухе, почве, воде — накапливаются огромные количества веществ, часть из которых обладает мутагенной и тератогенной активностью. Среди них особое значение имеют химические мутагены — ДДТ, гексахлорбензол и другие пестициды из класса хлорированных углеводородов, которые способны накапливаться в живых организмах. В районах интенсивного сельского хозяйства источником мутагенов являются нитраты.
Перевод животноводства на промышленные технологии в нашей стране сопровождался концентрацией поголовья животных на ограниченных территориях ферм и комплексов, что вызывает повышение концентрации микрофлоры, в том числе возбудителей различных болезней.
Вирусы, непосредственно внедряясь своим генетическим аппаратом в геном клеток животных или через свои биологические субстраты, обладающие антигенными свойствами, могут стать сильным фактором индуцированного мутагенеза. Для профилактики и лечения бактериальных и вирусных инфекций, инвазий используют инактивированные, а также живые вакцины, сыворотки, широкий арсенал синтезированных фармакологических средств, что, безусловно, дает положительный эффект. Однако следует оценивать и побочные результаты ветеринарной терапии,
что может проявляться в повышении частоты нарушений хромосом и ДНК в половых и соматических клетках ^самих животных, изменениях программы развития их эмбрионов*
Вместо повышения жизнеспособности из-за такого рода мутаций будут происходить ослабление резистентности, снижение продуктивности животных и т. д.
Особенно серьезную опасность представляют химические загрязнения среды разведения животных. Если всего три десятилетия назад основным удобрением полей был перегнивший навоз, то сейчас в основном используют химические удобрения. Это приводит к концентрации в кормах нитритов и нитратов, вредное действие которых на организм известно. Второй фактор — борьба с вредителями полей, садов и огородов. Она основана также на применении химических соединений — пестицидов, которые обладают очень сильными мутагенными свойствами. Отмечается, что большинство пестицидов устойчивы к химическому и биологическому разложению и имеют высокий уровень токсичности. Перечень вредных химических веществ, с которыми контактируют животные, огромен.
В этой связи важное значение имеет экологический мониторинг среды разведения животных, предусматривающий определение характера и уровня химических веществ в почве, воде, кормах и теле животных. Необходимо создание экологических карт хозяйств и регионов, на которые наносится соответствующая информация.
Авария на Чернобыльской АЭС привела к радиоактивному загрязнению огромных территорий РФ, Украины и Белоруссии. Возникла глобальная проблема оценки генетических последствий этой катастрофы на различные биологические объекты, в том числе сельскохозяйственных животных.
Нами проведен анализ хромосом у коров швицкой породы в совхозе «Труд» Клинцовского района Брянской области. Хозяйство относится к зоне сильного загрязнения окружающей среды радионуклидами. В исследованных метафазах обнаружено 38,94 % аберраций. Соотношение разных типов аберраций было следующим:
63,96
31,54
9,90
19,81
2,71
36,04
7,25
23,42
5,37
Аберрации хромосомного типа, % В том числе парные фрагменты ацентрические кольца кольцевые хромосомы дицентрические хромосомы Аберрации хроматидного типа, % В том числе одиночные фрагменты межхромосомные обмены межхроматидные обмены
Радионуклиды, как отмечено выше, сами по себе являются мощным фактором индукции мутаций, прежде всего повреждая целостность хромосом и вызывая аберрации.
Но оказалось, что они при взаимодействии с химическими мутагенами способны усугублять ситуацию. Во НИИ ветеринарной генетики и селекции (НИИВГиС) проводятся комплексные исследования по эколого-ветеринарной генетике. Это раздел ветеринарной генетики, изучающий влияние различных экологических факторов на наследственность животных, устойчивость к заболеваниям, сопряженную эволюцию микро- и макроорганизмов, генетическую обусловленность накапливать или выводить из организма вредные вещества, генетически детерминированные реакции животных на лекарственные препараты и т. д. Одна из задач эколого-ветеринарной генетики — селекция животных на устойчивость к вредным физическим, химическим и биологическим факторам. Сотрудники НИИВГиС установили негативное влияние радиации и химических загрязняющих веществ на хромосомную нестабильность, иммунный ответ к некоторым антигенам, гормональный статус и накопление химических элементов в тканях крупного рогатого скота. Проводится цитогенетический, иммуногенетичес-кий, иммунологический, химический и биохимический монито-ринги популяций сельскохозяйственных животных в экологически чистых и загрязненных районах Западной Сибири.
Неблагоприятная экологическая среда, характеризующаяся возрастанием уровня ионизирующей радиации, интенсивным ультрафиолетовым излучением и особенно действием токсических химических соединений, которыми сейчас в ряде регионов перенасыщены воздух, вода, почва и растения, повышенная контактность животных с ретровирусами приводят к снижению уровня иммунитета и увеличению нестабильности генетического аппарата животных. Это может проявляться в форме образования мобильных генетических элементов, способных к трансформации в вирусы иммунодефицита — СПИДа у человека и аналогичные им у животных.
Ученые подчеркивают, что проблема СПИДа (и родственных ему заболеваний, вызываемых ретровирусами — автономными генами, которые во многом сходны с вирусом иммунодефицита у человека) — это совершенно новая биологическая ситуация, с которой начинается широкое распространение приобретенной генетической патологии. При этом резкое ухудшение экологической ситуации можно считать ведущей причиной того, что именно во второй половине XX в. стали выходить из-под контроля процессы образования подвижных генов.
Методы эколого-генетического мониторинга в животноводстве. Увеличение частоты ранее известных или появление новых мутаций в последующих поколениях животных — показатель возрастающего действия мутагенов среды. В условиях конкретной экологической среды разведения животных важное значение имеет определение мутагенной активности как отдельных факторов, так и всего их комплекса. Здесь речь может идти о генетической активности лекар-
ственных препаратов, применении нетрадиционных кормовых добавок, гормональных обработок животных. Главное внимание, очевидно, должно уделяться анализу влияния на'стабильность генома того или иного уровня загрязнения окружающей среды.
В настоящее время рекомендуется использовать следующие тесты генетической активности веществ: 1) генные мутации; 2) хромосомные аберрации; 3) обмены между сестринскими хроматидами; 4) микроядерный тест и др.
Для оценки частоты новых и старых возникших ранее (генетический груз) мутаций рекомендуется использовать цитогенети-ческий метод, анализ мономорфных систем белков, учитывать частоту врожденных аномалий, спонтанных абортов и мертво-рождений, соотношение полов в потомстве животных. Образование хромосомной аберрации или необычного типа белка, которых не было у родственных животных, служит доказательством вновь образовавшейся мутации.
Анализ частоты сестринских хроматидных обменов в лимфоцитах крови дает возможность установить наличие генетической активности при воздействии на организм того или иного химического агента. Этот метод в 1972 г. предложили А. Ф. Захаров и Н. А. Еголина. Сущность его состоит в том, что в культивируемые in vitro лимфоциты, стимулированные для прохождения митозов фитогемагглютинином, вводят аналог тимидина 5-бромдезокси-уридин (БДУ). В зависимости от времени его добавки в среду (первый или второй клеточный цикл) он включается в одну или обе сестринские хроматиды. При соответствующей обработке препаратов и использовании красителя Гимзы под микроскопом можно видеть хромосомы с одной окрашенной (БДУ включился) и с другой неокрашенной хроматидами. В отдельных хромосомах наблюдают дифференциальную окраску хроматид — чередование темных и светлых участков. Это значит, что произошли изменения, т. е. обмены между сестринскими хроматидами (СХО). Высокая частота СХО свидетельствует о мутагенном действии изучаемого вещества, с которым контактировали клетки крови.
Этот метод дополняют анализом частоты разрывов хромосом, других аберраций, полученных от тех же животных, но лучше при сплошной окраске.
В последнее время предложен еще один чувствительный метод выявления мутагенности факторов среды — так называемый микроядерный тест. Дело в том, что дополнительные маленькие ядра (микроядра) на окрашенных мазках крови образуются за счет целых хромосом или их фрагментов, которые при делении не включаются в основное ядро из-за повреждений. Наблюдается возрастание числа микроядер в эритроцитах млекопитающих при воздействии мутагенов. Для этих же целей адекватные результаты может дать анализ частоты нерасхождений хромосом в клетках костного мозга на стадии анафазы.
Возрастание частоты злокачественных новообразований, в том числе и лейкозов у человека и животных, ученые обоснованно связывают с загрязнением окружающей среды. Установлено, что многие мутагены одновременно являются и канцерогенами — факторами, ведущими к злокачественной трансформации клеток. Следовательно, распространение в среде разведения животных генетически активных агентов может приводить не только к повышению частоты мутаций, но и к возрастанию частоты злокачественных новообразований.
Эта проблема в ветеринарии — одна из актуальных и очень непроста для решения. Исследования ученых показали существование РНК-содержащих или ретровирусов, способных при инфекции встраиваться в геном клеток животных и нарушать их генетическую программу. С другой стороны, в нормальных клетках млекопитающих признано существование участков ДНК, сходных по строению с РНК ретровирусов. Это так называемые протоонкогены, принимающие участие в контроле клеточного цикла. Последние, как полагают ученые, превращаются в онкогены, что приводит к нарушению их экспрессии и развитию ракового процесса. Толчком этого события могут быть вирусные инфекции, действие на организм физических и химических мутагенов.
Генетическая резистентность организмов при этом имеет значение. Одни животные остаются только инфицированными рет-ровирусами, что обнаруживают по реакции иммунодиффузии или с помощью ДНК-зондирования, у других вскоре развивается лейкоз или другая форма рака. Для выявления устойчивости животных к лейкозам важное значение имеет оценка стабильности генома. Одними из таких критериев могут быть частота полиплоидии, разрывов хромосом, изменчивость хромоцентров. По нашим данным, последний показатель у крупного рогатого скота, предрасположенного к лейкозу, достоверно отличается от нормы.
АНТИМУТАГЕНЫ
Важная особенность антимутагенов — стабилизация мутационного процесса до естественного уровня. Вещества с антимутагенными свойствами характеризуются способностью с различной степенью эффективности снижать уровни мутабильности. Им присуща такая характеристика, как физиологичность действия. Дело в том, что, проявляя антимутагенные свойства в низких концентрациях, некоторые из этих веществ в высоких дозах могут действовать как мутагены, например аргинин, глутаминовая кислота, си-линит натрия, стрептомицин, производные галловой кислоты.
Как показали наши исследования, передозировка витамина D2 при добавке его быкам привела к нарушению спермиогенеза. Генотоксическое действие выражалось в азоспермии и некро-спермии. Нами также установлено, что гипервитаминоз D стал
причиной развития врожденной аномалии у крупного рогатого скота, получившей название «синдром гиены». У этих животных отмечено повышение уровня аберраций хромосом и сестринских хроматидных обменов. Вместе с тем повышение концентрации других антимутагенов (токоферола, каротина, филлохинона и др.) не изменяет их действия.
Отдельные мутагены характеризуются специфичностью действия — они эффективны только по отношению к аберрациям хромосом или генным мутациям.
Механизм действия антимутагенов связывают с нейтрализацией мутагена до его взаимодействия с ДНК; предотвращением образования в процессе метаболической активности мутагенных продуктов из нетоксичных предшественников; активацией ферментных систем детоксикации поступающих из среды загрязнителей; предотвращением ошибок в процессе репликации ДНК; активацией репарации и других внутриклеточных систем поддержания целостности генетического аппарата.
Установлено, что способностью снижать частоту мутаций обладают более 200 природных и синтетических соединений. Одна из наиболее изученных групп антимутагенов — витамины и провитамины. Так, витамин Е (токоферол) в значительной степени снижает мутагенное действие ионизирующих излучений и химических соединений, а также блокирует генотоксическое действие вирусов.
Хорошо изучен другой жизненно важный антимутаген — витамин С (аскорбиновая кислота). Введение этого витамина в рацион способствует уменьшению частоты аберраций хромосом, вызванных ионизирующими излучениями.
Витамин А (ретинол) и его предшественник — каротин, содержащийся в растениях, снижают естественное и искусственное мутирование в клетках у животных, особенно вызванных действием промышленных загрязнений.
Известны также антимутагенные свойства витамина Ki (филлохинона). Животные, получающие в дополнение к обычному рациону филлохинон, лучше противостоят генотоксическому действию различных мутагенов промышленного происхождения.
Экспериментально показано антимутагенное действие пара-аминобензойной кислоты — предшественника фолиевой кислоты (витамина В), введение которой приводило к снижению действия алкилирующих соединений, ультрафиолетового и гамма-облучения путем усиления репарации.
Вторая группа соединений с выраженными антимутагенными свойствами — это отдельные аминокислоты (аргинин, гистидин, метионин, цистеин и др.).
Третью группу антимутагенов составляют некоторые ферменты (пероксидаза, НАДФ-оксидаза, глутатиолпероксидаза, каталаза и
ДР-)-
К четвертой группе антимутагенов можно отнести отдельные
фармакологические средства (интерферон, сульфаниламиды, гек-самидин, препараты фенотиазивного типа и др.).
Среди антимутагенов выделяют большую группу веществ, обладающих антиокислительными свойствами (производные галловой кислоты, ионол, оксипиридины, дигидропиридины и др.), а также группы комплексных соединений, входящих в состав различных продуктов растительного и животного происхождения.
Таким образом, накопление мутагенов в биосфере поставило перед человечеством серьезную задачу разработки методов и подходов по защите генетического аппарата (ДНК) как самого человека, так и многочисленных форм и сообществ живой материи, обитающих на Земле. В противном случае мутационные изменения могут привести к самым тяжелым последствиям, вплоть до полного вымирания видов. Основные пути снижения концентраций вредных веществ в биосфере следующие: создание безотходных технологий, замкнутых циклов производства в промышленности; переход от химических средств борьбы в сельском хозяйстве на безвредные биологические; создание устойчивых сортов растений, не требующих химических средств защиты, или безопасных с генетической точки зрения пестицидов; повышение естественной резистентное™ животных путем биологизации технологий кормления и содержания, выращивания молодняка; племенная работа, направленная на создание генетически устойчивых к болезням пород, линий, гибридов. Это будет ограничивать применение фармакологических средств, а также вакцин и сывороток. В перспективе все более широкую основу могут иметь узконаправленные вакцины, полученные генно-инженерным путем; выявление мутагенов в окружающей среде и их изъятие (компонентный подход). Хотя это и непросто, однако этот путь тоже будет применяться для снижения их воздействия на геном животных. Использование антимутагенов для снижения темпов мутирования, так называемый компенсационный подход, — наиболее реальное средство для защиты ДНК от необратимых изменений.
В селекционном плане актуальными задачами становятся выявление животных с нестабильными геномами и их браковка и отбор для воспроизводства особей со стабильными малочувствительными к экстремальным факторам среды геномами.
Контрольные вопросы. 1. Что такое мутации и мутагенез? 2. Какие мутации наследуются и какие нет? 3. Каковы классификация и определения разных типов числовых и структурных аберраций хромосом? 4. Каковы возможные причины и механизмы образования хромосомных мутаций? 5. В чем состоит молекулярный механизм генных мутаций и характер их влияния на биосинтез белка? 6. Что такое спонтанные и индуцированные мутации? 7. Какова роль репарирующих систем в мутационном процессе?
Глава 11 ГЕНЕТИЧЕСКИЕ ОСНОВЫ ОНТОГЕНЕЗА
Онтогенез — непрерывный процесс количественных и качественных изменений, происходящих в организме в течение всей жизни при постоянном взаимодействии генотипа и условий среды.
Термины «онтогенез» и «филогенез» ввел в биологию немецкий зоолог Е. Геккель. Он же сформулировал и обосновал (1866) биогенетический закон. Термин «онтогенез* означает процесс индивидуального развития особи, «филогенез* — история развития вида. Согласно биогенетическому закону индивидуальное развитие особи (онтогенез) является как бы кратким повторением (рекапитуляцией) филогенеза. А. Н. Северцов считает, что под филогенезом следует понимать ряд исторически отобранных онтогенезов. Филогенез реализуется в онтогенезе через наследственность, составляет основу онтогенеза и направляет онтогенез по пути, пройденному предками. В зиготе (оплодотворенной яйцеклетке) содержится записанная в структуре молекул ДНК генетическая информация о развитии будущего организма. В процессе онтогенеза происходит реализация генетической информации в определенных условиях среды.
Онтогенез животных включает два основных взаимосвязанных процесса — рост и развитие. Под ростом понимают процесс увеличения размеров организма, его массы, происходящий за счет накопления в нем активных, главным образом белковых, веществ. В основе роста лежит увеличение числа и размеров клеток и неклеточных образований. Под развитием понимают качественные изменения — процессы усложнения структуры организма, специализацию, дифференциацию и интеграцию его органов и тканей.
Одна из основных проблем биологии — выяснение вопроса: каким образом из одной-единственной клетки возникает множество разнообразных типов клеток, значительно различающихся между собой строением, функцией, и как в процессе онтогенеза идет становление признаков и свойств организма? Проблема изучения механизма генетического контроля онтогенеза имеет не только теоретическое, но и практическое значение для успешного решения таких вопросов, как селекция животных и растений, профилактика и лечение генетически обусловленных болезней у животных и человека.