Ксенобиотики могут трансформироваться в радикалы как энзиматическим, так и неэнзиматическим путем. Например известны токсиканты, специфично повреждающие тела дофаминэргических и серотонинэргических нейронов ЦНС (6-гидроксидофамин и 5,7-дигидрокситриптпмин), -клетки поджелудочной железы (аллоксан) и др., легко подвергающиеся аутоокислению с образованием активных радикалов (рисунок 11). Параллельно с самоокислением молекулы подобных ксенобиотиков осуществляется продукция реактивных форм кислорода.
Рисунок 11. Вещества, инициирующие свободно-радикальные процессы путем спонтанного окислительно-восстановительного превращения молекулы в клетках
Ионы металлов с переменной валентностью (медь, железо) облегчают процесс аутоокисления, а восстановители, например аскорбиновая кислота, обеспечивают регенерацию исходной формы ксенобиотика. Таким образом, формируется неэнзиматический окислительно-восстановительный цикл токсиканта. SH-соединения, никотиновая кислота в опытах in vitro останавливают процесс.
Ультрафиолетовые лучи активируют превращение (фотоактивация) накапливающихся в коже сульфаниламидных препаратов, 4-аминобензойной кислоты (рисунок 12) и др. в свободно-радикальную форму, которая, как полагают, ответственна за развитие фототоксических и фотоаллергических процессов у лиц, принимающих эти лекарства.
Рисунок 12. Структура о-аминобензойной (антраниловой) кислоты
При лечении псориаза псораленом и его аналогами одновременно назначаемое длинноволновое ультрафиолетовое облучение (320 - 400 нм) кожи пациентов активирует превращение препаратов в свободно-радикальную форму. Активные радикалы повреждают измененные эпидермальные клетки, образуя фотоаддукты с пиримидиновыми основаниями их ДНК. Наступает ремиссия болезни, но побочным неблагоприятным эффектом является развитие в последующем меланом и сквамозноклеточной карциномы, так как в процессе лечения изменяется генетический код и некоторой части здоровых эпидермоцитов.
+ Щелкните для загрузки увеличенной копии (5,08кб, 604x270 GIF)
Рисунок 13. Окислительно-восстановительный цикл трансформации ксенобиотиков, сопровождающийся активацией свободно-радикальных процессов в клетке. О2* - супероксидный анион; *ОН - гидроксильный радикал
Однако основной путь образования свободных радикалов в клетке - энзиматический метаболизм ксенобиотиков (рисунок 13). Способность веществ метаболизировать с образованием радикалов обычно связывают с величиной их одноэлектронного восстановительного потенциала. Соединения с высоким сродством к электронам предрасположены к их акцепции и легко восстанавливаются биологическими системами, в то время как вещества с низким сродством к электрону восстанавливаются биосистемами плохо. Вещества, не вступающие в окислительно-восстановительный цикл не являются источниками образования свободных радикалов в клетках. Например, хлороформ (НССl3) является слабым источником прооксидантных процессов из-за низкой способности к оденоэлектронному восстановлению. Напротив, четыреххлористый углерод (CCl4) легко метаболизирует в трихлорметильный радикал (*ССl3), способный отнимать водородные атомы от ненасыщенных жирных кислот, и является инициатором перекисного окисления липидов. Кроме того *CCl3 связывается с липидами микросомальных мембран, активирует кислород, который в свою очередь взаимодействует с макромолекулами (белками, нуклеиновыми кислотами). Восстановление четырёххлористого углерода до трихлорметилового радикала катализируется комплексом оксидаз смешанной функции, состоящим из флавопротеинов, НАДФН-зависимой Р-450 релуктазы, НАДН-цитохром b5 редуктазы и оксидазы цитохрома Р-450.
В процессе метаболизма адриамицина, митомицина С, нитрофурантиона, параквата и некоторых других ксенобиотиков образование промежуточных свободных радикалов идет при участии одной лишь НАДФН-зависимой цитохром Р-450-редуктазы. При этом образовавшиеся радикалы удается выявить только в жестких анаэробных условиях. В присутствии кислорода восстановленные радикалы быстро окисляются до исходной формы, при этом электроны переходят с радикала на молекулу кислорода, что приводит к образованию супероксидного аниона и других его реактивных форм и также активации свободно-радикальных процессов.
Очевидно, что если такой химический окислительно-восстановительный цикл превращения ксенобиотика будет продолжаться в течение достаточно длительного времени, механизмы клеточной защиты могут истощиться и произойдет повреждение клетки. Такая возможность вполне вероятна, поскольку известно, что супероксид-анион инактивирует супероксиддисмутазу, превращает аскорбиновую кислоту и токоферол, а гидроксильный радикал - угнетает глутатионпероксидазу.
Помимо гладкого эндоплазматического ретикулума оксидазы смешанной функции обнаружены в мембране ядра клетки. Поскольку эта мембрана окружает хроматин, активация здесь ксенобиотиков и образование свободных радикалов представляет угрозу ДНК, либо вследствие прямого взаимодействия метаболитов с нуклеиновыми кислотами, либо опосредованно, путем образования реактивных метаболитов кислорода или продуктов перекисного окисления липидов - компонентов ядерной мембраны.
Помимо упомянутых выше, в образовании активных радикалов могут принимать участие и другие энзимы. Так, ксантиноксидаза участвует в метаболизме адриамицина, нитрофурантиола, параквата до продуктов их одноэлектронного восстановления. Тирозиназа, в большом количестве содержащаяся в клетках меланом участвует в образовании многих реактивных метаболитов. Цитоплазматическая диафораза и простогландинсинтетаза облегчают формирование окислительно-восстановительного цикла трансформации параквата, ацетаминофена, бенз(а)пирена и т.д.
Таким образом, можно выделить несколько ключевых моментов, имеющих особое значение для реализации повреждающего действия ксенобиотиков на клетку, путем активации свободно-радикальных процессов:
1. Образовавшись, радикал - промежуточный продукт может иметь несколько способов дальнейшего превращения, соотношение между которыми зависит от степени оксигенации клеток (тканей);
2. Усиленное образование свободных радикалов может начаться в нескольких независимых локусах клетки (эндоплазматическом ретикулуме, митохондриях, ядре, цитоплазме);
3. Активация ксенобиотиков до активных радикалов может стать следствием последовательного действия на токсикант нескольких ферментов;
4. Возможно неэнзиматическое образование свободных радикалов. Превращение одного из ксенобиотиков может активировать превращение другого. Так, блеомицин повреждает ДНК в присутствии митомицина С и т.д.