АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Физико-химические свойства вещества

Прочитайте:
  1. III. Чужеродные вещества (примеси).
  2. S: Как называется на латинском языке формообразующие вещества?
  3. А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами
  4. Абразивные материалы и инструменты для препарирования зубов. Свойства, применение.
  5. Адгезивные системы. Классификация. Состав. Свойства. Методика работы. Современные взгляды на протравливание. Световая аппаратура для полимеризации, правила работы.
  6. Аденовирусы, морфология, культуральные, биологические свойства, серологическая классификация. Механизмы патогенеза, лабораторная диагностика аденовирусных инфекций.
  7. АЗОТСОДЕРЖАЩИЕ ВЕЩЕСТВА МОЧИ В НОРМЕ И ПРИ ПАТОЛОГИИ.
  8. Алгоритм обоснования энергетической ценности и нутриентного состава рациона питания на основе определения физиологической потребности организма в энергии и пищевых веществах.
  9. Альгинатные оттискные массы. Состав, свойства, показания к применению.
  10. Анатомия и гистология сердца. Круги кровообращения. Физиологические свойства сердечной мышцы. Фазовый анализ одиночного цикла сердечной деятельности

Физико-химические свойства веществ существенным образом сказываются на их токсичности. Определяющими являются: растворимость в воде, растворимость в липидах, кислотно-основная природа токсиканта.

А. Растворимость в воде.

Растворимость токсиканта в воде - необходимое условие его резорбции во внутренние среды организма: corpora non agunt nisi soluta (что не растворяется, то не действует). Для того, чтобы достичь структуры-мишени токсикант также должен попасть в водную фазу, так как вода - основа межклеточной жидкости организма. Полярность молекулы воды требует и от токсиканта известной полярности. Поэтому растворимость вещества в воде зависит от наличия и количества в его молекуле полярных групп и их строения (таблица 1).

Таблица 1. Растворимость некоторых производных бензола в воде (г/100г; С300)

R -C2H5 -J -Br -Cl -CH3 -F -NO2 -SO3H
г/100г воды не раств. 0,034 0,045 0,049 0,057 0,15 0,19 раств.

Некоторые вещества проявляют свойства кислот или оснований и, следовательно, могут находиться в растворе в протонированной или депротонированной форме. Это также сказывается на их растворимости (рисунок 2).

Рисунок 2. Растворимость анилина и его протонированного производного

Как видно из приведенного рисунка, наличие заряда в молекуле токсиканта существенно сказывается на его способности растворяться в воде, усиливая диполь-диполь взаимодействие растворителя и растворенного соединения.

Б. Растворимость в липидах.

Растворимость в липидах имеет основное значение для процессов проникновения и распределения больших молекул токсикантов в организме. Кроме того, чем выше растворимость вещества в липидах, тем хуже оно выводится из организма. Мерой жиро-растворимости токсикантов является количество вещества, способное к растворению в единице объема жидких масел или органических растворителей. При анализе получаемых результатов следует иметь в виду, что в различных растворителях вещество растворяется по-разному. Так, растворимость амидопирина (г/100г; 370С) в бензоле составляет 0,81; в топленом сале - 1,7; растительном масле - 2,0; смеси бензола и лецитина (1:1) - 12,6; хлороформе - 120,6.

Нерастворимые в жирах молекулы могут попасть в организм из окружающей среды лишь в том случае, если они проходят через поры биологических мембран, либо переносятся через барьеры с помощью специальных механизмов, например, пиноцитоза и т.д. (см. раздел "Токсикокинетика").

Большие, нерастворимые в липидах вещества, как правило, относятся к числу малотоксичных.

Жирорастворимость и водорастворимость - связанные между собой свойства. Чем полярнее молекула вещества, тем лучше она растворяется в воде и хуже - в липидах. Наибольшей биологической активностью, как правило, обладают токсиканты с промежуточной растворимостью. В этой связи важной для токсикологии характеристикой является коэффициент распределения вещества в средах: масло/вода или гептан/вода. Для некоторых веществ их биологическая активность пропорциональна величине этого коэффициента (таблица 2)

Таблица 2. Зависимость токсичности алифатических спиртов от их жиро- и водорастворимости *.

Параметры СН3ОН С2Н5ОН С3Н7ОН С4Н9ОН С5Н11ОН С6Н13ОН С8Н17ОН
ЛД50 в/в (мМ/кг) Мыши 53,7 18,2 5,09 2,09 1,01 0,53
Гемолиз эритроцитов кролика (М) 7,43 4,11 0,80 0,44 0,18 0,06 0,02
Угнетение активности каталазы на 50% (М) 3,6 3,47 2,36 1,95 1,33 - -

* - жирорастворимость увеличивается с увеличением молекулярной массы спирта.

Четкую корреляцию можно проследить лишь в гомологичных рядах токсикантов, при этом оцениваемые эффекты, как правило, неспецифичны (денатурация энзима, нарушение свойств биологических мембран, наркоз, повреждение клетки, смерть).



Для специфического взаимодействия токсиканта со структурой-мишенью растворимость в воде или липидах имеет неупорядоченное значение.

В. Кислотно-основная природа токсиканта.

Многочисленные токсиканты являются слабыми кислотами или основаниями, то есть могут, в зависимости от рН среды, находиться в протонированной или депротонированной форме. Кислоты, находясь в протонированной форме - незаряженные молекулы, азотистые основания, напротив, представляют собой катионы. В депротонированной форме кислоты представляют собой анионы, а основания - не заряжены. Сила кислоты или основания определяется способностью к диссоциации, которая характеризуется величиной константы диссоциации (Ка или рКа - отрицательный десятичный логарифм значения Ка). Чем выше значение рКа, тем легче осуществляется процесс протонирования вещества. Основания с высоким значением рКа - более сильное основание; кислота с высоким рКа - слабая кислота. Так, диметиламин (рКа 10,7) - более сильное основание, чем N-метиланилин (рКа 4,7); фенол (карболовая кислота рКа 9,9) - более слабая кислота, чем бензойная кислота (рКа 4,2). Соотношение ионизированной и неионизированной форм токсиканта в среде помимо величины рКа, определяется рН среды. С увеличением рН увеличивается число незаряженных молекул оснований и заряженных анионов кислот.

Часто ионизация токсиканта сопровождается усилением его сродства к рецептору, однако одновременно затрудняется прохождение молекулы через биологические барьеры.

Сильные кислоты и щелочи (полностью диссоциирующие в водных растворах), при действии на ткани организма, резко изменяя рН, вызывают денатурацию макромолекул клеток. Этот процесс лежит в основе химического ожога покровных тканей.


Дата добавления: 2015-02-06 | Просмотры: 920 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)