АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Оценка эффективности

Прочитайте:
  1. III. Бактериологическая оценка молока.
  2. III. Оценка характера анестезии.
  3. III.3.1. Оценка условий для соблюдения режима АРТ
  4. IV. ИТОГОВАЯ ОЦЕНКА СОСТОЯНИЯ ЗДОРОВЬЯ
  5. IV.Оценка степени тяжести.
  6. VI шкала «Общая оценка адаптированности ребенка»
  7. XVII. Эпидемиологический анализ и оценка эффективности противоэпидемических мероприятий
  8. А. Оценка состояния гипоталамо-гипофизарно-надпочечниковой системы
  9. А. Оценка функции щитовидной железы
  10. Алкогольные психозы: определение, классификация. Судебно-психиатрическая оценка. Дипсомания.

Оценка эффективности средств, рассматриваемых как потенциальные антидоты, может быть проведена в экспериментах in vitro и in vivo.

3.1.1. Опыты in vitro

Некоторые свойства антидотов могут быть оценены in vitro. Особенно это касается препаратов, в основе действия которых лежит химический и биохимический антагонизм.

Так, в опытах с простыми биологическими объектами (простейщие, примитивные ракообразные, культуры клеток и т.д.) удается провести скрининг эффективности хелатирующих агентов в отношении тех или иных металлов. На первый взгляд антидотную активность этих препаратов можно прогнозировать и на основе теоретических представлений об образовании соответствующей координационной связи, анализа величин констант стабильности комплекса хелатор-металл. Однако, как указывают Jokel, Kostenbauder, эффективность комплексообразователя определяется помимо сродства к металлу, еще и растворимостью его в воде, липофильностью и способностью накапливаться в сайтах клетки, где аккумулируются металлы, некоторыми другими особенностями взаимодействия комплексона с биосистемами. В этой связи опыты с простыми биологическими объектами могут быть важным элементом предварительной оценки препаратов перед детальным обследованием in vivo.

Активность некоторых антидотов связана с ингибиторным действием на ферменты. В этой связи возникает возможность провести скрининг веществ, анализируя их ингибиторные свойства. Таким образом, можно, в частности, оценить эффективность обратимых ингибиторов холинэстеразы (ХЭ), как потенциальных компонентов профилактических антидотных рецептур при поражениях ФОС или лечебных антидотов при отравлении холинолитиками. Полезные исследования могут быть проведены in vitro для оценки эффективности реактиваторов холинэстеразы. В подобных опытах изучается кинетика восстановления активности энзимов, угнетенных различными ФОС. Именно в таких опытах удалось установить феномен двухфазности в действии ФОС на энзим, определить характеристики скорости "старения" и спонтанной (самопроизвольной) реактивации ХЭ, выбрать эффективные препараты для использования в клинике. Преимущество таких исследований состоит не только в простоте получения большого количества важных данных, но и возможности работать с ацетилхолинэстеразой человека, что упрощает процесс экстраполяции экспериментальных данных на условия клинической практики.

Для характеристики антидотов с физиологическим антагонизмом опыты in vitro не всегда информативны. Однако в ряде случаев эффективные антагонисты токсиканта могут быть найдены в опытах с изолированными органами, содержащими рецепторы к тем или иным нейромедиаторам. Такого рода эксперименты широко проводились при оценке холинолитиков, как потенциальных антидотов фосфорорганических отравляющих веществ.

Важные данные при характеристике антидотов, конкурирующих с токсикантами за взаимодействие с биорецепторами, могут быть получены in vitro с помощью радиолигандных методов исследования.

Однако опыты in vitro не могут дать исчерпывающей информации о потенциальной активности изучаемых средств. Так, известно, что метгемоглобинообразователи вызывают эффект как непосредственно действуя на гемоглобин (фенилгидроксиламин, 4-аминофенол, 4-диметиламинофенол и др.), так и после соответствующих метаболических превращений в организме (анилин). В этой связи простое сравнение кинетики in vitro метгемоглобинообразования вызываемого например 4-диметиламинофенолом и веществом типа анилина не даст объективной информации о соотношении эффективности этих соединений как антидотов при отравлении цианидами.

Особенно очевидны ограничения метода при попытке сравнивать эффективность средств с различным механизмом действия.

3.1.2. Опыты in vivo.

Перед внедрением антидота в клиническую практику необходимо доказать его эффективность в опытах in vivo. Именно в экспериментах на лабораторных животных можно четко определить условия взаимодействия токсиканта и противоядия, выбрать оптимальные дозы, учесть временные особенности развития интоксикации и, тем самым, получить количественные характеристики ожидаемого антидотного эффекта. Исследование эффективности - типичный научный эксперимент, который необходимо планировать таким образом, чтобы получить максимальное количество нужной информации с минимальной затратой средств. Данные должны быть достоверными, а для этого - количество животных в группах - достаточным. Выбор животных должен быть тщательно продуман с учетом знаний видовых особенностей биологического объекта. Необходимо чтобы эффекты токсиканта и механизмы действия антидота были одинаковы у экспериментального животного и человека. Следует стремиться к тому, чтобы последовательность поступления токсиканта и антидота в организм имитировали ситуацию, ожидаемую в реальных условиях использования противоядия на практике. Типовой вариант протокола изучения эффективности антидотов представлен в таблице 6.

Таблица 6. Типовой протокол эксперимента изучения эффективности антидота

Животные -вид, линия, пол -число -контроли
Токсикант -доза -способ введения -растворитель, разбавитель, эмульгатор -концентрация -стабильность -объем
Антидот -доза -способ введения -растворитель, разбавитель, эмульгатор -концентрация -стабильность -объем
Временной фактор -последовательность введения яд - антидот -время между введениями -схема введения
Показатель активности -смерть -биохимические признаки токсического процесса -гематологические признаки токсического процесса -физиологические реакции -поведенческие реакции -нейротоксичность -патологоанатомические изменения

Токсикант. Важным фактором, влияющим на замысел эксперимента, является доза токсиканта, условия его введения. Возможно испытание эффективности противоядия в условиях введения фиксированной дозы яда, либо путем определения характеристик зависимости "доза-эффект" (например ЛД50) у интактных и леченых антидотом животных, с последующим сравнением величин (например, расчет коэффициента защиты). Преимущество второго подхода состоит в том, что полученный результат основывается на большой выборке данных и носит однозначный характер. Недостаток метода - необходимость использовать большое количество животных в эксперименте. Поэтому опыты проводят, как правило, на мелких грызунах. Напротив, опыты с фиксированной дозой выполняют на ограниченном количестве высокоорганизованных крупных животных.

Методика определения параметров зависимости "доза-эффект" не отличаются от описанной в разделе "Токсиктметрия". Сложности могут возникнуть при интерпретации получаемых результатов. Одна из таких сложностей связана с неодинаковым углом наклона экспериментальных прямых токсичности в координатах "логарифм дозы - пробит летальности" интактных и защищенных антидотом животных (рисунок 12).

Рисунок 12. Варианты сдвига кривой зависимости доза-эффект токсиканта (А) при его введении животным, леченым антидотом (В).

В данном случае необходимо помнить, что коэффициент защиты, определяемый, как отношение ЛД50*/ЛД50 (где ЛД50* - среднесмертельная доза у защищенных антидотом животных), характеризует эффективность антидота только в одной точке (ЛД50). Поскольку исследователя интересует эффективность препарата и при других действующих дозах токсиканта, коэффициент защиты может стать источником либо завышенных, либо заниженных данных, в зависимости от направления расхождения кривых доза-эффект и условий интоксикации (большие или малые дозы воздействия).

Простой способ обойти проблему состоит в нахождении еще одной характеристики эффективности антидота по соотношению величин ЛД10*/ЛД90 (ЛД10* - величина, определенная у защищенных животных). Если это отношение больше 1, эффективность антидота признается удовлетворительной (возможны и другие подходы).

Как уже указывалось, коэффициент защиты обычно не определяют в опытах на крупных животных. В подобных случаях используют метод при котором одну фиксированную дозу токсиканта вводят как интактным, так и защищаемым антидотом животным. Обычно дозу выбирают с учётом знания величины ЛД50 (1, 2, 3 и более ЛД) и предполагаемой эффективности антидота. Основная сложность эксперимента состоит в том, чтобы подобрать такую дозу токсиканта, при которой отмечалась бы максимально возможная летальность в контрольной группе животных, но одновременно отчетливо выявлялся защитный эффект противоядия (если он имеется). Для научной верификации получаемых результатов разработаны параметрические и непараметрические методы статистического анализа данных. Подобный подход широко используется в токсикологии особенно на заключительных этапах оценки эффективности разрабатываемого средства.

Антидот. Выбор дозы разрабатываемого антидота осуществляется, как правило, эмпирически. На ранних этапах исследования его эффективность оценивается при введении животным в нескольких дозах. В этих опытах и вырабатываются оптимальные схемы, которые в дальнейшем корректируются результатами исследований переносимости препарата. На заключительных этапах оценивается эффективность рекомендуемой схемы (дозы). Способ введения противоядия при его экспериментальном изучении должен соответствовать способу применения в клинической практике.

Важной характеристикой препаратов является стабильность их лекарственных форм. Нестабильные при хранении препараты, не смотря на их порой высокую эффективность, не могут найти широкое применение в практике. По этой причине не получил широкого распространения высокоэффективный реактиватор холинэстеразы HI-6.

Временной фактор. Важным фактором, влияющим на эффективность антидотов, является временной промежуток между началом его введения и моментом действия токсиканта (см. понятия "комбинация", "сукцессия"; раздел "Коергизм"). Это особенно важно в случае интоксикации быстродействующими веществами, такими как цианиды, фосфорорганические соединения и т.д. Поэтому при испытаниях разрабатываемого противоядия его необходимо вводить с учетом временного фактора. В ходе испытаний противоядия могут быть назначены до введения токсиканта, через определенное время после токсиканта, либо при появлении первых признаков интоксикации.

Антидоты, назначаемые до контакта с токсикантом, называются профилактическими. Такие средства нашли применение в военной медицине. В частности разработаны профилактические антидоты ФОВ (см. выше). Их применение с лечебной целью недопустимо. Противоядия, применяемые после воздействия токсиканта, называются лечебными. К числу лечебных относится подавляющее большинство существующих антидотов. Условия испытания эффективности противоядия должны соответствовать условиям, на которые рассчитано его применение в реальной обстановке.

Показатель активности. В большинстве исследований эффективность антидота оценивают по его влиянию на выживаемость экспериментальных животных, отравленных токсикантом (см. выше).

Другим критерием эффективности нередко служит продолжительность жизни отравленного лабораторного животного. Существенное увеличение показателя свидетельствует в пользу эффективности испытываемого средств.

Вполне допустимо применение целого арсенала других методических приемов (биохимические, физиологические, морфологические методы исследования) для оценки эффективности противоядия. Необходимо учитывать, что при отравлении многими веществами не удается создать противоядия, защищающие от смертельных доз, однако вполне возможна разработка антидотов, существенно облегчающих течение несмертельного поражения, сокращающих сроки госпитализации, уменьшающих вероятность развития осложнений и инвалидизации отравленных, существенно повышающих эффективность других средств и методов терапии отравлений. В этих случаях использование прецизионных методов оценки функционального состояния экспериментальных животных совершенно необходимо. При выборе биохимических и физиологических методов следует учитывать механизм токсического действия яда, особенности патогенеза интоксикации, ибо в этом случае получаемые результаты будут представлять особый интерес. Так, уровень метгемоглобина при отравлении метгемоглобинообразователями, ацидоза при отравлении метанолом, активности холинэстеразы при отравлении карбаматами и ФОС, количество эритроцитов в крови при отравлении гемолитиками и т.д., - позволят сделать обоснованное заключение об эффективности антидотов соответствующих веществ. Часто для целей оценки эффективности антидотов используют классические инструментальные методы исследований: показатели АД, ЭКГ, ЭЭГ, миографию, скорость проведения нервного импульса по нервному волокну, частоту дыхания и т.д.

Если токсикант вызывает специфические морфологические изменения в органах и тканях, ценная информация может быть получена при использовании макроскопических и микроскопических методов исследований.

Еще одним подходом к оценке разрабатываемого средства может быть изучение поведения лабораторных животных. Этот подход оказывается особенно ценным при разработке противоядий, препятствующих развитию психодислептических эффектов токсикантов, либо предназначенных для профилактики неблагоприятных последствий интоксикаций, связанных с нарушением функций ЦНС.

При оценки антидотов, вступающих в химическое взаимодействие с токсикантами (например, новые комплексообразователи) или влияющих на их метаболизм (например, индукторы микросомальных ферментов), объективными показателями их активности могут стать показатели токсикокинетики яда: период полувыведения, величина клиаренса, объем распределения, содержание метаболитов в крови, моче. Данные, свидетельствующие об ускорении элиминации веществ или угнетении образования токсичных метаболитов, являются свидетельствами эффективности разрабатываемых противоядий.


Дата добавления: 2015-02-06 | Просмотры: 893 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)