АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Магнитно-резонансная томография
Магнитный резонанс, или, как его называли и по-прежнему называют в естественных науках, — ядерный магнитный резонанс (ЯМР), — это явление, впервые упомянутое в научной литературе в 1946 г. учеными США F.Bloch и E.Purcell. После включения ЯМР в число методов медицинской визуализации слово «ядерный» было опущено. Современное название метода магнитно-резонансная томография (МРТ) трансформировалось из более раннего названия — ЯМР исключительно из соображений маркетинга и радиофобии населения. Основными элементами магнитно-резонансного томографа являются: магнит, генерирующий сильное магнитное поле; излучатель радиочастотных импульсов; приемная катушка-детектор, улавливающая ответный сигнал тканей во время релаксации; компьютерная система для преобразования получаемых с катушки-детектора сигналов в изображение, выводимое на монитор для визуальной оценки.
В основе метода МРТ лежит явление ЯМР, суть которого в том, что ядра, находящиеся в магнитном поле, поглощают энергию радиочастотных импульсов, а при завершении действия импульса излучают эту энергию при переходе в первоначальное состояние. Индукция магнитного поля и частота прилагаемого радиочастотного импульса должны строго соответствовать друг другу, т.е. находиться в резонансе.
Роль классического рентгеновского исследования ограничена возможностью получения изображения только костных структур. Вместе с тем костные изменения ВНЧС, как правило, появляются на поздних стадиях заболеваний, что не позволяет своевременно оценить характер и степень выраженности патологического процесса. В 1970—1980-е годы для диагностики дисколигаментарных изменений применялась артротомо-графия с контрастированием полости сустава, которая как интервенционное вмешательство в настоящее время вытеснена более информативными для врача и необременительными для больного исследованиями. Широко используемая в современной клинике рентгеновская КТ позволяет детально оценить структуру костей, образующих ВНЧС, но чувствительность этого метода в диагностике изменений внутрисуставного диска слишком низка. В то же время МРТ как неинвазивная методика позволяет объективно оценить состояние мягкотканных и фиброзных структур сустава и прежде всего структуру внутрисуставного диска. Однако, несмотря на высокую информативность, МРТ ВНЧС не имеет стандартизованной методики выполнения исследования и анализа выявляемых нарушений, что порождает разночтение получаемых данных.
Под действием сильного внешнего магнитного поля в тканях создается суммарный магнитный момент, совпадающий по направлению с этим полем. Это происходит за счет направленной ориентации ядер атомов водорода (представляющих собой диполи). Величина магнитного момента в изучаемом объекте тем больше, чем выше напряженность магнитного поля. При выполнении исследования на изучаемую область воздействуют радиоимпульсы определенной часто-
ты. При этом ядра водорода получают дополнительный квант энергии, который заставляет их подняться на более высокий энергетический уровень. Новый энергетический уровень является в то же время менее стабильным, а при прекращении действия радиоимпульса атомы возвращаются в прежнее положение — энергетически менее емкое, но более стабильное. Процесс перехода атомов в первоначальное положение называется релаксацией. При релаксации атомы испускают ответный квант энергии, который фиксируется воспринимающей катушкой-детектором.
Радиоимпульсы, воздействующие во время сканирования на «зону интереса», бывают различными (повторяются с разной частотой, отклоняют вектор намагниченности диполей под различными углами и т.д.). Соответственно и ответные сигналы атомов во время релаксации неодинаковые. Различают время так называемой продольной релаксации, или Т1, и время поперечной релаксации, или Т2. Время Т1 зависит от размера молекул, в состав которых входят диполи водорода, от мобильности этих молекул и тканях и жидких средах. Время Т2 в большей степени зависит от физических и химических свойств тканей. На основе времени релаксации (Т1 и Т2) получают Т|-и Тг-взвешенные изображения (ВИ). Принципиальным является то, что одни и те же ткани имеют различную контрастность на Т1 и Т2 ВИ. Например, жидкость имеет высокий МР-сигнал (белый цвет на томограммах) на Т2 ВИ и низкий МР-сигнал (темно-серый, черный) на Т1 ВИ. Жировая ткань (в клетчатке, жировой компонент губчатой кости) имеет высокой интенсивности МР-сигнал (белый) как на Т1, так и на Т2 ВИ. По изменению интенсивности МР-сиг-нала на Т1 и Т2 ВИ различными
структурами можно судить об их качественном строении (кистозная жидкость).
В современной лучевой диагностике метод МРТ считается самым чувствительным при выявлении изменений в мягкотканных структурах. Этот метод позволяет получать изображения в любой плоскости без изменения положения тела пациента, безвреден для человека.
Однако существуют противопоказания к выполнению МРТ, связанные с повреждающим воздействием магнитного поля и радиоимпульсов на некоторые аппараты (сердечные водители ритма, слуховые аппараты). Не рекомендуется выполнять МРТ при наличии в организме пациента металлических имплантатов, клемм, инородных тел. Поскольку большинство МР-томографов представляют собой замкнутое пространство (туннель магнита), выполнение исследования у пациентов с клаустрофобией крайне затруднительно или невозможно. Другим недостатком МРТ является продолжительное время исследования (в зависимости от программного обеспечения томографа от 30 мин до 1 ч).
Поскольку оба сустава функционируют как единое целое, нужно обязательно проводить билатеральное исследование. Принципиальным является применение катушки (поверхностной) малого диаметра (8—10 см), что позволяет получить максимальное пространственное разрешение. При позиционировании катушки ее центр располагают на 1 — 1,5 см вентральнее наружного слухового прохода (рис. 3.33).
Дата добавления: 2015-02-05 | Просмотры: 767 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
|