АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КРОВИ

Прочитайте:
  1. A) стационарная концентрация лекарства в плазме крови
  2. A-адреномиметики. Фармакологические свойства. Показания к применению. Побочные эффекты.
  3. B) биохимическое исследование крови??
  4. B-адреноблокаторы. Фармакологические свойства. Показания к применению. Побочные эффекты.
  5. B-адреномиметики. Фармакологические свойства. Показания к применению. Побочные эффекты.
  6. COBPEMEННЫE ПРАВИЛА ПЕРЕЛИВАНИЯ КРОВИ
  7. I. Цукровий діабет
  8. III. Коллигативные свойства растворов
  9. А-адреноблокаторы. Фармакологические свойства. Показания к применению. Побочные эффекты.
  10. А. Цукровий діабет

Кровь представляет собой суспензию, в которой жидкая фаза — плазма, а частицы — форменные элементы. Как и все другие клетки организма, мембраны эритроцитов, лейкоцитов и тромбоцитов по­ляризованы, причем наружная поверхность мембран заряжена поло­жительно по отношению к внутренней. Вокруг клеток крови, как и эндотелиальных клеток, формируется облако отрицательных заря­дов. Благодаря одноименным зарядам клетки крови отталкиваются друг от друга и от стенок кровеносных сосудов. При потере зарядов форменные элементы крови могут склеиваться и слипаться.

Кровь обладает следующими физико-химическими свойства­ми: плотностью, вязкостью, поверхностным натяжением, кис­лотно-щелочным равновесием (рН), коллоидно-осмотическим дав­лением и свертыванием.

Плотность и вязкость крови. Плотность (удельная масса) крови — это масса единицы объема. Плотность цельной крови равна 1,045...1,055. Это означает, что 1 мл крови имеет массу 1,045...1,055 г, а 1 л крови — 1,045.„1,055 кг. Поэтому концентра­цию веществ в крови выражают в граммах, в миллиграммах или молях, содержащихся в 1 л крови. Например, выражение 8 г/л означает, что в 1 л крови содержится 8 г какого-то вещества. До­пускается также расчет концентрации не на 1 л, а на 100 мл кро­ви (г/100 мл или г/%).

Плотность плазмы крови равна 1,025... 1,034, а эритроцитов — 1,090. Большая плотность эритроцитов по сравнению с плазмой объясняется наличием в них железа. Благодаря разной плотности эритроциты и плазму можно разделить при центрифугировании или отстаивании.

Плотность крови зависит от количества в ней эритроцитов, ге­моглобина, белков и солей в плазме. Большое количество липидов в плазме крови снижает ее плотность.


Вязкость крови — это сила внутреннего трения, или сцеп­ления, частиц жидкости. Она в 4...5 раз больше вязкости дистилли­рованной воды, это величина относительной вязкости крови. Чем больше эритроцитов в крови, тем больше вязкость крови. Увели­чивают вязкость крови глобулярные белки, особенно фибриноген. Альбумины в меньшей степени влияют на вязкость.

Интересно, что вязкость крови, движущейся по кровеносным сосудам (in vivo), отличается от вязкости крови, взятой для иссле­дования (in vitro). In vivo вязкость крови зависит от длины и диа­метра сосуда, от скорости кровотока. Например, в крупных сосу­дах, где большая скорость движения крови, форменные элементы перемещаются ближе к оси сосуда, а вблизи стенок течет плазма с меньшей вязкостью. В капиллярах вязкость крови уменьшается, так как форменные элементы могут проходить только по одному, а между ними располагается столбик плазмы. При резком замед­лении тока крови эритроциты могут слипаться и образовывать большие скопления — конгломераты. В этом случае вязкость кро­ви увеличивается.

Чем больше вязкость, тем больше сердцу приходится рабо­тать, чтобы проталкивать кровь по сосудам. Поэтому вязкость крови значительно влияет на гемодинамику и формирование кровяного давления.

Поверхностное натяжение крови. Поверхностное натяжение крови — это сила сцепления или взаимодействия молекул поверх­ностного слоя жидкости, направленная от поверхности внутрь. Поверхностное натяжение крови ниже, чем у воды, за счет при­сутствия в ней поверхностно-активных веществ (ПАВ): низко­молекулярных жирных кислот, желчных кислот, различных аро­матических веществ.

При увеличении в крови ПАВ поверхностное натяжение вна­чале уменьшается, но затем быстро — в течение нескольких ми­нут — восстанавливается до первоначального уровня. Считают, что в этих реакциях участвуют катионы кальция, которые осажда­ют различные органические кислоты, влияющие на поверхност­ное натяжение.

Поддержание постоянства поверхностного натяжения крови важно для нормальной транспортировки веществ между кровью и тканями и для движения крови по сосудам.

Кислотно-щелочное равновесие (КЩР) крови. В крови имеются кислотные и щелочные ионы. Суммарный заряд щелочных ионов больше, чем кислотных, и их соотношение называется кислотно-щелочным равновесием крови. Поэтому реакция крови слабоще-почная и рН составляет 7,35. Показатель концентрации водород­ных ионов (рН) является одним из самых жестких констант орга­низма. Это связано с тем, что любая химическая реакция протека­ет при' оптимальном для нее уровне рН. Всякое изменение рН крови ведет к нарушению сердечной деятельности, дыхания, рабо-


 



!*



ты мозга, печени и других органов. Сдвиг рН крови на несколько десятых, особенно в кислую сторону, несовместим с жизнью.

Между тем в кровь постоянно поступают различные вещества, способные нарушить рН крови. Они всасываются из пищевари­тельного тракта, реабсорбируются из канальцев почек, образуются в тканях. Среди метаболитов преобладают кислые вещества — уголь­ная и молочная кислоты, кислые фосфаты и сульфаты, желчные кислоты и др. Но, несмотря на непрерывное изменение состава крови, ее рН остается на постоянном уровне. Как это происходит? Регуляция кислотно-щелочного равновесия осуществляется как химическими, так и физиологическими механизмами.

Химические механизмы регуляции протека­ют на молекулярном уровне. К ним относятся буферные системы крови и щелочной резерв. Физиологическая регуля­ция включает сложные нейрогуморальные механизмы, затраги­вающие функции различных систем органов.

Буферные системы крови — это вещества, которые могут взаимо­действовать либо с кислотными, либо с щелочными ионами, по­ступающими в кровь, и нейтрализовывать их. В результате хими­ческих реакций рН крови не изменяется, а уменьшается буферная емкость крови. При этом сами компоненты буферных систем не влияют на активную реакцию крови. Три буферные системы — би-карбонатная, фосфатная и белковая — находятся в плазме крови и одна — гемоглобиновая — в эритроцитах.

Бикарбонатная буферная система состоит из угольной кислоты (Na2C03) и бикарбонатов натрия и калия (NaHC03 и КНС03). При попадании в кровь какой-либо кислоты, более сильной, чем угольная, она взаимодействует с бикарбонатами. В результате об­разуются нейтральная соль и угольная кислота. Угольная кислота нестойкая, она разлагается на воду и диоксид углерода; последний выводится через легкие. При появлении в крови избытка щелоч­ных ионов они взаимодействуют с угольной кислотой и реакция крови не изменяется.

Фосфатная буферная система образована первичным (NaHjPO^ и вторичным (Na2HP04) фосфатом натрия. Первичный фосфат об­ладает свойствами слабой кислоты, вторичный — слабой щелочи. Емкость этой системы небольшая, но она имеет важное значение в регуляции выделения фосфорных солей почками.

Белковая буферная система плазмы крови выполняет свою функ­цию благодаря тому, что белки являются амфотерными соединени­ями и могут нейтрализовывать как кислоты, так и щелочи.

Гемоглобиновая буферная система находится в эритроцитах. Если буферные свойства крови принять за 100 %, то 75 % при­ходится на гемоглобиновую. Она состоит из оксигемоглобина, т. е. соединения гемоглобина с кислородом, и восстановленного гемоглобина, т. е. освободившегося от кислорода. Механизм рабо­ты гемоглобиновой буферной системы заключается в следующем.


В тканевых капиллярах оксигемоглобин, отдавая кислород, пре­вращается в восстановленный гемоглобин. Это вещество является очень слабой кислотой и существенно не влияет на рН крови. В ле­гочных капиллярах диоксид углерода выводится из крови, и реак­ция крови могла бы измениться в щелочную сторону. Однако этого не происходит, так как образующийся оксигемоглобин обладает кислотными свойствами и предотвращает защелачивание крови.

Таким образом, значение буферных систем заключается в том, что рН крови может довольно долго оставаться на уровне 7,35, несмотря на поступление в кровь кислотных или щелоч­ных компонентов.

Щелочной резерв крови — это сумма всех щелочных веществ кро­ви, главным образом бикарбонатов натрия и калия. Величину ще­лочного резерва крови определяют по количеству диоксида угле­рода, которое может выделиться из бикарбонатов при взаимодей­ствии с кислотой. В среднем щелочной резерв крови составляет 55...60 см3. Чем больше щелочной резерв крови, тем лучше она за­щищена от кислых метаболитов. Поэтому у высокопродуктивных молочных коров, у спортивных лошадей с более интенсивным об­меном веществ щелочной резерв крови находится на верхней гра­нице нормы. Для повышения щелочного резерва в некоторых слу­чаях в качестве подкормки жвачным животным дают питьевую соду — бикарбонат натрия, особенно это эффективно при скарм­ливании кислого силоса.

Наряду с щелочным резервом в крови имеется и кислотный ре­зерв, или кислотная емкость крови. Кислотная емкость крови име­ет меньшее физиологические значение, но она необходима для нейтрализации избытка щелочных ионов.

Таким образом, при увеличении содержания в крови кислот­ных или щелочных компонентов прежде всего КЩР крови восста­навливается на молекулярном уровне за счет буферных систем или щелочного резерва, что не требует активного участия нейрогумо-ральных механизмов.

Если же молекулярные механизмы не способны сохранить КЩР, то наступают активные изменения в работе выделительных систем организма — почек, потовых желез, легких и пищевари­тельного тракта.

Почки нейтрализуют или удаляют из крови избыток либо кис­лотных, либо щелочных солей. Поэтому реакция мочи может ко­лебаться в широких пределах — от 5,7 до 8,7. Потовые железы вы­полняют ту же функцию, удаляя из организма главным образом кислые ионы. Через легкие выводится из крови диоксид углерода, поэтому при повышенной концентрации углекислоты в крови на­ступает одышка, имеющая компенсаторное значение.

Большое значение в регуляции рН крови имеют железы пище-нарительного тракта. В печени происходит нейтрализация серно­кислых соединений, аммиака. Со слюной, поджелудочным и ки-


 




шечным соками выделяется много бикарбонатов. Например, со слюной у крупного рогатого скота за сутки удаляется до 300 г би­карбонатов. Энергичным способом удаления из крови водородных ионов является перевод их в состав желудочного сока. Обкладоч-ные железы желудка синтезируют из поступающих с кровью водо­родных ионов и ионов хлора соляную кислоту, а также переводят в желудочный сок органические кислоты. Этим, кстати, объясня­ется хорошо известный факт: после напряженной мышечной ра­боты усталость проходит после еды. И дело не в восстановлении затраченных калорий, ибо из пищи питательные вещества так быстро не всасываются, а в выделении из крови в желудок молоч­ной кислоты и других метаболитов, накопившихся в результате мышечной деятельности.

Физиологические механизмы, участвующие в регуляции КЩР и рН крови, включают в себя рецепторы, улавливающие концен­трацию водородных ионов, афферентные нервные пути, нервные центры, эфферентные нервы и органы-эффекторы.

Итак, рН крови имеет постоянную величину, что достигается как молекулярными, так и физиологическими регуляторными ме­ханизмами. Тем не менее кислотно-щелочной баланс может изме­няться. При некоторых физиологических и патологических реак­циях возможно увеличение в крови кислых или щелочных продук­тов. Сдвиг КЩР в кислую сторону называется ацидозом, а в ще­лочную — алкалозом.

По величине сдвига КЩР ацидозы и алкалозы бывают компен­сированными и некомпенсированными. Вначале при поступле­нии в кровь избытка кислот или щелочей рН крови не изменяется, но уменьшается запас буферной емкости. Такой ацидоз или алка­лоз — без сдвига рН — называется компенсированным, так как он компенсирован за счет запаса имевшегося в крови щелочного или кислотного резерва. Компенсированные ацидозы и алкалозы на­блюдаются часто у здоровых животных и отличаются кратковре­менностью.

Когда буферная емкость крови окажется исчерпанной, тогда ре­акция крови, естественно, изменяется. Такой ацидоз или алкалоз, когда изменяется рН крови, называется некомпенсированным.

По механизмам возникновения ацидозы и алкалозы могут быть газовыми и негазовыми. Газовый ацидоз наблюдается при затруд­нении дыхания, при содержании животных в душных, плохо вен­тилируемых помещениях. В крови тогда накапливается диоксид углерода, превращающийся в угольную кислоту. Негазовый, или метаболический, ацидоз возникает при накоплении в крови не угольной кислоты, а других кислот — молочной, фосфорной и др. Это возможно, например, при тяжелой мышечной работе или при скармливании большого количества кислого силоса.

Алкалозы встречаются реже, чем ацидозы. Газовый алкалоз воз­можен при усиленной вентиляции легких, когда кровь содержит


меньше диоксида углерода и защелачивается. Негазовый алкалоз обычно связан с поступлением в организм большого количества щелочных солей, в этом случае увеличивается резервная щелоч­ность крови.

Коллоидно-осмотическое давление крови. Осмотическое давле­ние — это сила, которая вызывает перемещение воды или раство­ренных в ней веществ через полупроницаемые мембраны. В орга­низме все мембраны — сосудистые стенки, оболочки клеток или поверхности внутриклеточных образований — полупроницаемые. Они хорошо пропускают воду, но избирательно — растворенные вещества. Перемещение веществ между клетками, тканевой жид­костью и кровью зависит от их концентрации. Чем больше кон­центрация растворенных веществ, тем больше осмотическое дав­ление данной жидкости.

В основном осмотическое давление крови определяется концен­трацией минеральных солей. Их суммарное количество в плазме крови составляет около 0,9 г в 100 мл, это соответствует осмотическо­му давлению в 7,6 ати, или 5776 мм рт. ст. Органические вещества (например, глюкоза) мало влияют на величину осмотического давле­ния. Объясняется это тем, что молекулы органических веществ на­много крупнее неорганических ионов, поэтому в единице объема ко­личество их частиц (молекул) меньше; осмотическое же давление за­висит именно от числа молекул растворенного вещества.

Вещества, растворенные в плазме крови, переходят через мемб­раны из более концентрированного раствора в менее концентри­рованный, а вода, наоборот, из среды с меньшей концентрацией в большую. Постоянство осмотического давления крови имеет зна­чение для обмена веществами между кровью, тканевой жидкостью и клетками и является столь же необходимым условием для жиз­ни, как и другие показатели гомеостаза — рН, температура.

Рассмотрим на примере эритроцитов, как изменяются свойства клеток в растворах с разным осмотическим давлением. Внутри эритроцитов (в цитоплазме) такая же концентрация солей, как и в плазме крови, т. е. внутренняя среда эритроцитов изотонична плаз­ме крови. Если эритроциты отделить от плазмы крови и поместить их в раствор соли с более высокой концентрацией (гипертоничес­кий), чем внутри эритроцитов, то вода будет переходить из эритро­цитов в раствор до выравнивания осмотического давления по обе стороны мембраны. Эритроциты будут обезвоживаться, сморщи­ваться, уменьшаться в размере. Вначале этот процесс обратимый, и если эритроциты вернуть в изотонический раствор, то они восста­новят и свою форму, и функции. В условиях, когда градиент кон­центрации солей по обе стороны мембраны большой, а эритроциты длительное время находятся в них, они погибают.

В растворах с более низкой концентрацией солей (гипотони­ческий), чем внутри эритроцитов, вода под действием осмоти­ческого давления переходит в эритроциты. Эритроциты вби-


рают в себя воду, из двояковогнутых становятся сферическими (шарообразными), увеличиваются в объеме и разрываются. Такое явление — разрушение эритроцитов и выход из них гемоглоби­на — называется гемолизом (буквально — растворение крови). Ге­молиз, произошедший в гипотоническом растворе, называется осмотическим.

Исходя из изложенного, следует помнить, что внутривенно можно вводить лишь те растворы, которые изотоничны крови, т. е. имеют такое же осмотическое давление, как и плазма крови. Такие растворы называются физиологическими. Самый элементар­ный физиологический раствор — это раствор хлорида натрия кон­центрацией 0,85 % для млекопитающих и птицы и 0,65 % — для холоднокровных животных.

Поскольку плазма крови содержит коллоиды (белки), то кровь обладает также и коллоидным давлением. Коллоидное давление называется также онкотическим (греч. onkos — припухание, взду­тость). Оно составляет 15...35 мм рт. ст., т. е. менее 1 % от осмо­тического. Однако значение онкотического давления велико: это та сила, которая удерживает воду внутри сосудов и способствует переходу ее из тканевой жидкости в кровь. Это связано с гидро­фильными свойствами белков плазмы крови. Онкотическим это давление называется потому, что при уменьшении его (напри­мер, при голодании, когда снижается содержание белков в кро­ви) вода не удерживается в кровеносных сосудах и переходит в ткани, появляются «голодные» отеки. Внешний вид создается та­кой, будто ткани опухают.

Коллоидно-осмотическое давление складывается из осмоти­ческого и онкотического. При необходимости введения в кровь большого количества жидкостей или для перфузии органов и ис­кусственного кровообращения, а также для выращивания культу­ры тканей следует учитывать не только осмотическое и онкоти-ческое давление, но и оптимальный набор минеральных веществ. Поэтому физиологические растворы могут содержать кроме хло­рида натрия и другие вещества. Так, в растворе Рингера содержат­ся хлориды натрия, калия, кальция и бикарбонат натрия. В раст­вор Локка кроме перечисленных компонентов входит глюкоза, а в раствор Тироде — хлорид магния и однозамещенный фосфат натрия. Более сложные растворы в своем составе имеют белки (альбумины) и поэтому называются плазмозамещающими раст­ворами. Такие растворы в большей степени соответствуют плазме крови, так как имеют оптимальное коллоидно-осмотическое дав­ление, реакцию, соответствующую крови, и соотношение различ­ных компонентов.

В бывш. СССР была разработана искусственная кровь, содер­жащая помимо определенных катионов и анионов и других свой­ственных плазме крови компонентов фторуглеродные соедине­ния, способные связывать и переносить кислород. Эту жидкость, а ее


назвали «голубой кровью», можно использовать для замещения крови вместо донорской.

Регуляция коллоидно-осмотического давле­ния. Коллоидное давление крови зависит от содержания белков и, следовательно, обусловлено регуляцией белкового обмена. Осмо­тическое давление крови подвержено более частым колебаниям, обычно не выходящим из физиологических границ благодаря слож­ным регуляторным взаимодействиям между кровью и органами.

Рассмотрим следующий опыт: лошади ввели в вену 7 л 5%-ного раствора сульфата натрия. По расчету это должно повысить осмо­тическое давление крови в два раза, однако уже через 10 мин оно восстановилось. Каким образом происходит восстановление осмо­тического давления?

Процесс начинается с перераспределения воды между кровью и тканевой жидкостью. Если этого недостаточно и осмотическое давление не восстанавливается, то вступают в действие более слож­ные регуляторные механизмы.

В стенках кровеносных сосудов имеются рецепторные клетки, чувствительные к изменению осмотического давления крови. Эти клетки называются осморецепторами. Помимо кровеносных сосу­дов они находятся также в определенных структурах мозга, напри­мер в гипоталамусе (промежуточный мозг). При изменении осмо­тического давления крови в осморецепторах возникает потенциал действия, который по центростремительным нервным волокнам передается в гипоталамус и в кору больших полушарий. Центро­бежные нервные пути идут к выделительным органам. При учас­тии почек, потовых желез, желудочно-кишечного тракта из орга­низма уменьшается или увеличивается выделение воды и солей. Одновременно регулируется активность центра жажды, что вызы­вает изменение потребления животным воды и солей.

В эфферентную часть рефлекторной дуги часто вовлекаются как самостоятельные звенья железы внутренней секреции — гипо­физ, надпочечники, щитовидная и паращитовидные железы, и их гормоны влияют на выделение воды и отдельных минеральных ве­ществ из организма.

Таким образом, при изменении коллоидно-осмотического дав­ления крови включаются нейрогуморальные механизмы, быстро восстанавливающие нормальные параметры крови.


Дата добавления: 2015-12-15 | Просмотры: 661 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)