Полумартингалы
2.1. Определение. Будем говорить, что процесс - мартингал, если выполняются условия: 1) , 2) Р - п. н., и .
Будем говорить, что - супермартингал, если: 1) , 2) Р - п. н. для и .
Процесс субмартингал, если: 1) , 2) Р - п. н. для и .
Множество случайных процессов, являющихся "суб", "супер", или просто мартингалами называется полумартингалами. Множество полумартингалов обозначим через .
Пример. Рассмотрим пуассоновский процесс . Из его определения следует, что для . Поэтому . Следовательно, пуассоновский процесс - субмартингал.
Ниже мы покажем, что если , то он допускает представление где - процесс имеющий ограниченную вариацию, а - мартингал.
2.2. Определение. Случайный процесс называется предсказуемым, если его траектории непрерывны слева, имеют предел справа и не имеют разрывов второго рода.
Теорема 5 (Дуба - Мейера). Пусть - субмартингал относительно меры Р. Тогда существует единственный предсказуемый возрастающий процесс такой, что для любого Р - п. н. где - мартингал.
(Без доказательства.)
Замечание. Если - супермартингал, то - субмартингал. Следовательно значит из где .
Пример. Пусть - пуассоновский процесс, тогда Р - п. н. для , где - мартингал относительно меры Р.
2.3. Определение. Мартингал относительно меры Р называется регулярным, если существует -измеримая случайная величина , такая, что Р - п. н. для .
2.3.1. Замечание. Очевидно, что регулярность мартингала относительно меры Р эквивалентна требованию равномерной интегрируемости семейства .
2.3.2. Теорема 6. Пусть регулярный мартингал относительно меры Р, а семейство непрерывно справа. Тогда у процесса существует модификация с траекториями непрерывными справа и имеющими левый предел.
Доказательство. Так как - регулярный мартингал, существует - измеримая интегрируемая случайная величина такая, что . Тогда для каждого имеем Р - п. н. . Поэтому, если положить , то получим непрерывную справа модификацию.
Покажем теперь, что существует левый предел. Действительно, если бы с положительной вероятностью этот предел не существовал, то тогда среднее число пересечений отрезка снизу вверх за время обозначаемое через было бы равно , но . Указанное противоречие довершает доказательство теоремы.
2.4. Приведем теперь условия существования непрерывной справа модификации у супермартингала.
Теорема 7. Пусть - непрерывно справа, а супермартингал относительно меры Р. Супермартингал имеет непрерывную справа модификацию тогда и только тогда, когда функция времени непрерывна справа.
Доказательство. В силу условий теоремы Р - п. н., а из того, что , имеем Р - п. н. для .
Отметим Р - п. н. тогда и только тогда, когда .
Пусть . Так как равномерно интегрируемо, то . Стало быть, Р - п. н. тогда и только тогда, когда . Поскольку как функция убывает, то это равносильно ее непрерывности справа в точке .
Пусть - непрерывная справа модификация супермартингала . Тогда для каждого (как функция времени, в силу приведенных выше рассуждений) непрерывна справа. Обратно, если функция времени непрерывна справа, то процесс представляет собой непрерывную справа модификацию. Доказательство закончено.
2.5. В дальнейшем нам понадобится неравенство Колмогорова для квадратично интегрируемых мартингалов.
Определение. Мартингал относительно меры Р назовем квадратично интегрируемым, если .
Теорема 8 (неравенство Колмогорова). Пусть – квадратично интегрируемый мартингал. Тогда для любого
.
Доказательство. Пусть , где . Очевидно, что и - марковские моменты, причем Р - п. н. Поэтому . Заметим теперь, что . Поэтому в силу неравенства Чебышева, имеем . Доказательство закончено.
2.6. Далее нам понадобится одно неравенство для квадратично интегрируемых мартингалов.
Теорема 9. Пусть квадратично интегрируемый мартингал относительно меры Р. Тогда
(3)
Доказательство. В силу теоремы 8 для , имеем
Поэтому
Отсюда в силу неравенства Коши - Буняковского, имеем
Стало быть отсюда следует утверждение теоремы.
Дата добавления: 2015-01-18 | Просмотры: 705 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|