АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Классификация потоков s-алгебр

Прочитайте:
  1. I. Классификация и определения
  2. I. Определение, классификация, этиология и
  3. II. Этиология и классификация
  4. Plathelmintes. Тип Плоские черви. Классификация. Характерные черты организации. Медицинское значение.
  5. TNM клиническая классификация
  6. TNM. Клиническая классификация
  7. V 13: Классификация наследственных болезней.
  8. V. МЕЖДУНАРОДНАЯ КЛАССИФИКАЦИЯ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ
  9. VIII) Классификация желез внутренней секреции
  10. А. Классификация и клиническая картина

4.1. Пусть имеется стохастический базис .

Определение. Опциональной (предсказуемой) алгеброй, обозначается через называется алгебра, порождаемая стохастическими интервалами вида где — опциональный (предсказуемый) момент остановки.

Из определения следует следующее утверждение.

Теорема 19. .

4.2. Определение. Случайный процесс со значениями в называется опциональным (предсказуемым), если отображение измеримо относительно алгебры на .

Теорема 20. Предсказуемая алгебра порождена всеми непрерывными слева согласованными процессами.

Доказательство. Из теоремы 18 следует, что порождена всеми процессами вида , где и , где любые опциональные марковские моменты, причём Р - п. н. . Ясно, что эти процессы непрерывны слева и согласованы. По­этому для доказательства теоремы достаточно доказать, что каждый непрерывный слева согласованный процесс является предсказуемым. Обозначим . Процесс - предсказуем и непрерывен слева и поэтому Р - п. н. Значит - предсказуемый процесс. Доказательство закончено.

Теорема 21. Опциональная алгебра порождена всеми согласованными процессами, непрерывными справа и имеющими предел слева.

Доказательство. Опциональная алгебра порождена процессами вида , где - любые опциональные марковские моменты, причём , которые являются согласованными, непрерывными справа и имеющие левый предел. Поэтому нам осталось доказать, что каждый согласованный, непрерывный справа и имеющий предел слева процесс - опционален.

Пусть - случайный процесс являющийся таковым. Для каждого, целого положительного числа построим возрастающую последовательность моментов остановки следующим образом: для всех , причём если это множество пустое, то полагаем, что . В силу теоремы - прогрессивно измерим, поэтому тоже прогрессивно измерим. Значит , где прогрессивно измерим. Заметим теперь, что - м. о., поэтому из непрерывности справа процесса получаем, что Р - п. н. на множестве (попутно заметим, что непрерывность слева эквивалентна тому, что для Р - п. н.). Обозначим для Процесс - опционален, поскольку он представляет собой сумму счётного числа опциональных процессов. Устремляя теперь получим, что из непрерывности справа Р - п. н., т. е. -опциональный процесс. Доказательство закончено.

4.3. Т еорема 22. Если процесс - опционален, то множество - тонкое (для ).

Доказательство. Пусть и по индукции определим Очевидно, что если , то для любых фиксированных . Ясно, что процесс - непрерывен справа и согласован, a - момент остановки. Заметим теперь, что множество Поэтому где также является моментом остановки. Заметим, что из опциональности процесса следует, что Р - п. н. при . Поэтому . Доказательство закончено.

 

 


Дата добавления: 2015-01-18 | Просмотры: 655 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)