станты диссоциации, определяемой по закону действующих масс как
где [О], [R], [OR] - это молярные концентрации операторной ДНК, репрессора и комплекса оператор—репрессор соответственно. Для оператор-репрессорного комплекса значение К составляет величину порядка 10 -13 М, что свидетельствует о высокой прочности этого комплекса. Исходя из этих данных становится ясно, почему присутствие всего лишь десяти молекул репрессора в клетке оказывается достаточным для полной репрессии lac -оперона.
Репрессор обладает также достаточно высоким сродством и к неоператорной ДНК. Так, с poly-d(AT) он связывается с константой диссоциации около 10-8 М. На прочности связывания с неоператорной ДНК присутствие индуктора никак не сказывается. Эти данные указывают на то, что в клетке новосинтезированные молекулы репрессора, а также комплексы репрессор-индуктор всегда связаны с ДНК. Тетрамеры репрессора, судя по всему, отыскивают операторную последовательность скорее с помощью линейной диффузии, или «скольжения», по хромосоме, чем посредством обычной пространственной диффузии в цитозоле. Ясно, что первый способ поиска должен быть намного оперативнее второго (рис. 15.11). Именно потребности быстрого поиска, по-видимому, объясняют особую выгоду палиндромного строения операторной последовательности, которая в этом случае может быть идентифицирована репрессором при продвижении по хромосоме с любой стороны. Модель поиска оператора lac -репрессором, основанная на представлении
Рис. 15.11. Схематическое изображение процесса поиска lac -репрессором области lac оператора на хромосоме E. coli, организованной в тесно сплетенный клубок-нуклеоид. Подробности - в тексте.