АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Вычисление двойных интегралов

Прочитайте:
  1. Анализ динамического ряда. Вычисление основных показателей динамического ряда
  2. Вычисление длительности систолы по Базетту и систолического показателя по Фогельсону-Раскиной
  3. Вычисление скоростей движения воздуха менее 1 м/сек при использовании шарового кататермометра
  4. Вычисление фертильных дней
  5. Дифференциал функции, его вычисление
  6. Простейшие свойства несобственных интегралов 1-го рода
  7. Простейшие свойства несобственных интегралов 2-го рода
  8. Свойства двойных интегралов

Самый простой способ вычисления двойного интеграла — сведение его к вычислению определенных интегралов. Этот способ можно реализовать, если область интегрирования является элементарной. Ниже перечисляются элементарные области интегрирования.

1. — прямоугольная область, расположенная между прямыми , , , а также между прямыми , , , и функция непрерывна в этой прямоугольной области , то.

(15.3)

2. Область расположена между прямыми , , , а также между непрерывными кривыми , (, ). Если функция непрерывна в области , то

(15.4)

3. Область расположена между прямыми , , , а также между непрерывными кривыми , (, ). Если функция непрерывна в области , то

(15.5)

Как вычислить двойной интеграл по области , которая не является элементарной? Надо область разбить прямыми, параллельными осям координат на конечное число непересекающихся элементарных областей. Затем, используя свойство 3 двойных интегралов, найти двойной интеграл по данной области .

Замечание. Правые части формул (15.3) – (15.4) называются повторными интегралами. Интеграл, стоящий в скобках, называется внутренним. Другой интеграл называется внешним. Сначала вычисляют внутренний интеграл, а затем вычисляют внешний интеграл. Вместо выражений

,

пишут соответственно

, . ▲


Дата добавления: 2015-01-18 | Просмотры: 611 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)