АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Доказательство. 1.Если , то из 3-го и 4-го свойства определенного интеграла вытекает
1. Если , то из 3-го и 4-го свойства определенного интеграла вытекает
.
2. Рассмотрим произвольную последовательность и докажем, что
. Из свойства точной верхней грани следует, что найдется такое значение функции , что , где . Так как , то найдется такое число , что , если . Теперь, из монотонности функции следует
.
Отсюда вытекает, что неравенство справедливо, если , т.е. . ■
Дата добавления: 2015-01-18 | Просмотры: 537 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
|