АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
ЭЛЕКТРОПРОВОДНОСТЬ ЖИВОГО ОРГАНИЗМА
Выдающийся американский ученый Сент-Дьердьи писал, что жизнь представляет собой непрерывный процесс поглощения, преобразования и перемещения энергии различных видов и различных значений. Этот процесс самым непосредственным образом связан с электрическими свойствами живого вещества, а конкретнее, с его способностью проводить электрический ток (электропроводностью).
Электрический ток — это упорядоченное движение электрических зарядов. Носителями электрических зарядов могут быть электроны (заряжены отрицательно), ионы (как положительные, так и отрицательные) и дырки. О дырочной проводимости стало известно не очень давно, когда были открыты материалы, которые получили название полупроводников. До этого все вещества (материалы) делили на проводники и изоляторы. Затем были открыты полупроводники. Это открытие оказалось впрямую связанным с пониманием процессов, протекающих в- живом организме. Оказалось, что многие процессы в живом организме могут быть объяснены благодаря применению электронной теории полупроводников. Аналогом молекулы полупроводника является макромолекула живого. Но явления, происходящие в ней, значительно сложнее. Прежде чем рассмотреть эти явления, напомним основные принципы работы полупроводников.
Электронная проводимость осуществляется электронами. Она реализуется в металлах и газах, где электроны имеют возможность двигаться под действием внешних причин (электрического поля). Это имеет место в верхних слоях земной атмосферы — ионосфере.
Ионная проводимость реализуется движениями ионов. Она имеет место в жидких электролитах. Дырочная проводимость возникает в результате разрыва валентной связи. При этом появляется вакантное место с отсутствующей связью. Там, где отсутствуют электронные связи, образуется пустота, ничто, дырка. Так в кристалле полупроводника возникает дополнительная возможность для переноса электрических зарядов потому, что образуются дырки. Эта проводимость получила название дырочной. Так, полупроводники обладают и электронной и дырочной проводимостью.
Изучение свойств полупроводников показало, что эти вещества сближают живую и неживую природу. Что в них напоминает свойства живого? Они очень чувствительны к действию внешних факторов, под их влиянием изменяют свои электрофизические свойства. Так, при повышении температуры электрическая проводимость неорганических и органических полупроводников очень сильно увеличивается. У металлов в этом случае она уменьшается. На проводимость полупроводников оказывает влияние свет. Под его действием на полупроводнике возникает электрическое напряжение. Значит, происходит превращение энергии света в энергию электрическую (солнечные батареи). Полупроводники реагируют не только на свет, но и на проникающую радиацию (в том числе и на рентгеновские излучения). На свойства полупроводников влияют давление, влажность, химический состав воздуха и т.д. Аналогичным образом мы реагируем на изменение условий во внешнем мире. Под действием внешних факторов меняются биопотенциалы тактильных, вкусовых, слуховых, зрительных анализаторов.
Дырки являются носителями положительного электрического заряда. Когда объединяются электроны и дырки (рекомбини-руют), то заряды исчезают, а точнее, нейтрализуют друг друга. Ситуация меняется в зависимости от действия внешних факторов, например температуры. Когда валентная зона целиком заполнена электронами, вещество является изолятором. Таков полупроводник при температуре -273°С (нулевая температура по Кельвину). В полупроводниках действуют два конкурирующих процесса: объединение (рекомбинация) электронов и дырок и их генерации за счет термического возбуждения. Электропроводность полупроводников определяется соотношением между этими процессами.
Электрический ток зависит от количества переносимых зарядов и от скорости этого переноса. В металлах, где проводимость является электронной, скорость переноса невелика. Эту скорость называют подвижностью. Подвижность зарядов (дырок) в полупроводниках значительно больше, чем в металлах (проводниках). Поэтому у них даже при относительно малом числе носителей зарядов проводимость может быть существенной.
Полупроводники можно образовать и другим способом. В вещество можно внести атомы других элементов, у которых уровни энергии расположены в запрещенной зоне. Эти внесен-
Ю. Г. Мизуи
ные атомы являются примесями. Так можно получить вещество — полупроводник с примесной проводимостью. Проводники с примесной проводимостью широко используются как преобразователи первичной информации, поскольку их проводимость зависит от многих внешних факторов (температуры, интенсивности и частоты проникающего излучения).
В организме человека имеются вещества, которые обладают примесной проводимостью. Одни примесные вещества при их введении в кристаллическую решетку поставляют электроны в зону проводимости. Поэтому их называют донорами. Другие примеси захватывают электроны из валентной зоны, то есть образуют дырки. Их называют акцепторами.
Установлено, что в живом веществе имеются атомы и молекулы как доноры, так и акцепторы. Но живое вещество обладает и такими свойствами, которых нет у органических и неорганических полупроводников. Это очень малые значения энергии связи. Так, для гигантских биологических молекул энергия связи составляет всего несколько электронвольт, тогда как энергия связи в растворах или жидких кристаллах находится в пределах 20-30 эВ.
Это свойство очень принципиально, поскольку позволяет обеспечить высокую чувствительность. Проводимость осуществляется электронами, которые переходят от одной Молекулы к другой благодаря туннельному эффекту. В белковых и других биологических объектах очень высокая проводимость зарядоно-сителей. В системе углеродно-кислотных и водородно-азотных связей электрон (возбужденный) благодаря туннельному эффекту перемещается по всей системе белковой молекулы. Поскольку подвижность таких электронов очень высокая, это обеспечивает высокую проводимость белковой системы.
В живом организме реализуется и ионная проводимость. Образованию и разделению ионов в живом веществе способствует наличие воды в белковой системе. От него зависит диэлектрическая постоянная белковой системы. Носителями зарядов в этом случае являются ионы водорода — протоны.
Космос и здоровье
Только в живом организме все виды проводимости (электронная, дырочная, ионная) реализуются одновременно. Соотношение между разными проводимостями меняется в зависимости от количества воды в белковой системе. Чем меньше воды, тем меньше ионная проводимость. Если белки высушены (воды в них нет), то проводимость осуществляют электроны.
Вообще влияние воды не только в том, что она является источником ионов водорода (протонов) и таким образом обеспечивает возможность ионной проводимости. Вода играет более сложную роль в изменении общей проводимости. Дело в том, что вода является примесью-донором. Она поставляет электроны (каждый атом водорода разрывается на ядро, то есть протон, и один орбитальный электрон). В результате электроны заполняют дырки, поэтому уменьшается дырочная проводимость. Она уменьшается в миллион раз. В дальнейшем эти электроны передаются белкам, и положение восстанавливается, но не полностью. Общая проводимость после этого все же остается в 10 раз меньше, чем до добавления воды.
Можно добавить к белковым системам не только донор (воду), но и акцептор, который приводил бы к увеличению числа дырок. Установлено, что таким акцептором является, в частности, хлоранил — вещество, содержащее хлор. В результате дырочная проводимость увеличивается настолько, что общая проводимость белковой системы растет в миллион раз.
Нуклеиновые кислоты также играют важную роль в живом организме, несмотря на то, что их структуры, водородные связи и т.д. отличаются от таковых у биологических систем. Имеются вещества (небиологические) с принципиально подобными электрофизическими свойствами. В частности, таким веществом является графит. Энергия связи у них так же, как и у белков, мала, а удельная проводимость велика, хотя и на несколько порядков меньше, чем у белков. Подвижность электроносителей, от которой зависит проводимость, у аминокислот меньше, чем у белков.
Но аминокислоты в составе живого организма обладают и
свойствами, которыми белки не обладают. Это очень важные свойства. Благодаря им механическая энергия в них превращается в электрическую. Это свойство вещества в физике называется пьезоэлектрическим. В нуклеиновых кислотах живого организма тепловое воздействие также приводит к образованию электричества (термоэлектричество). То и другое свойство аминокислот определяется наличием в них воды. Ясно, что указанные свойства меняются в зависимости от количества воды. Использование этих свойств в организации и функционировании живого организма очевидно. Так, зависимость проводимости от освещенности (фотопроводимость) лежит в основе реакции зрительной сетчатки. Но молекулы живых организмов обладают и электронной проводимостью, как и металлы.
Электрофизические свойства белковых систем и нуклеиновых молекул проявляются только в динамике, только в живом организме. С наступлением смерти электрофизическая активность очень быстро пропадает. Это происходит потому, что прекратилось движение зарядоносителей (ионов и электронов и др.). Можно не сомневаться, что именно в электрофизических свойствах живого вещества заложена возможность быть живыми. Об этом Сент-Дьердьи писал так: «Я глубоко убежден, что мы никогда не сможем понять сущность жизни, если ограничимся молекулярным уровнем. Ведь атом — это система электронов, стабилизируемая ядром, а молекулы — не что иное, как атомы, удерживаемые вместе поделенными электронами, то есть электронными связями».
Из сопоставления электрофизических свойств белковых систем и аминокислот с полупроводниками может создаться впечатление о том, что электрофизические свойства тех и других одинаковы. Это не совсем так. Хотя в белковых системах живого организма имеется и электронная, и дырочная, и ионная проводимость, но они связаны между собой более сложно, чем в неорганических и органических полупроводниках. Там эти проводимости просто складываются и получается суммарная, итоговая проводимость. В живых системах такое арифметическое сложение проводимостей недопустимо. Здесь надо пользоваться не арифметикой (где 1+1=2), а алгеброй комплексных чисел. При этом 1+1 не равно 2. Ничего странного в этом нет. Это говорит о том, что эти проводимости не являются независимыми друг от друга. Взаимные их изменения сопровождаются процессами, которые меняют общую проводимость по более сложному закону (но не произвольно!). Поэтому, говоря об электронной (или другой) проводимости белковых систем, добавляют слово «специфическая». То есть имеется электронная (и другие) проводимость, которая свойственна только живому. Поэтому ее называют специфической. Процессы, определяющие электрофизические свойства живого, очень сложны. Одновременно с движением электрических зарядов (электронов, ионов, дырок), которое определяет электропроводность, действуют друг на друга электромагнитные поля. Элементарные частицы обладают магнитными моментами, то есть являются магнитиками. Поскольку эти магнитики взаимодействуют друг с другом, то в результате этого воздействия устанавливается определенная ориентация этих частиц. Непрерывно молекулы и атомы меняют свое состояние — они осуществляют непрерывные и скачкообразные (дискретные) переходы из одного энергетического состояния в другое. Получая дополнительную энергию, они возбуждаются. Когда они от нее освобождаются, то переходят в основное энергетическое состояние. Эти переходы оказывают влияние на подвижность зарядоносителей в живом организме. Таким образом, действие электромагнитных полей меняет движение электронов, ионов и других зарядоносителей. С помощью этих зарядоносителей осуществляется передача информации в центральной нервной системе. Сигналы в центральной нервной системе, обеспечивающие работу всего организма как единого целого, являются электрическими импульсами. Но они распространяются значительно медленнее, чем в технических системах. Это обусловлено сложностью всего комплекса процессов, которые оказывают влияние на движение зарядоносителей, на их подвижность, а значит, и на скорость распространения электрических импульсов. Организм отвечает действием на определенное внешнее воздействие только после того, как он получил информацию об этом воздействии. Ответная реакция организма очень замедлена потому, что сигналы о внешнем воздействии распространяются медленно. Таким образом, скорость защитных реакций живого организма зависит от электрофизических свойств живого вещества. Если не действуют извне электрические и электромагнитные поля, то эта реакция еще больше замедляется. Это установлено как в лабораторных опытах, так и при изучении влияния электромагнитных полей во время магнитных бурь на живые системы, в том числе и на человека. Кстати, если бы реакция живого организма на внешнее воздействие была во много раз быстрее, хо человек был бы способен защититься от многих воздействий, от которых он сейчас погибает. Примером может служить отравление. Если бы организм мог ответить сразу на попадание в него яда, то он принял бы меры для его нейтрализации. В реальной ситуации этого не происходит, и организм погибает даже при очень малых количествах яда, введенного в него.
Конечно, мы сегодня еще не знаем всех свойств комплексной электропроводности живого вещества. Но ясно то, что именно от них зависят те принципиально отличные свойства, которые присущи только живому. Именно прежде всего путем воздействия на комплексную электропроводность живого реализуется влияние электромагнитных излучений искусственного и естественного происхождения. Чтобы углубиться в понимание биоэнергетики, необходимо ее конкретизировать. Для раскрытия сущности электрических явлений в живом организме необходимо понять смысл потенциала биологической системы, биопотенциала. В физике понятие потенциала имеет следующий смысл.
Потенциал — это возможность, в данном случае энергетическая возможность. Для того, чтобы оторвать орбитальный электрон от атома водорода, надо преодолеть силы, которые удерживают его в атоме, то есть надо обладать энергетической возможностью эту работу выполнить. Энергия в атомных и ядерных процессах, а также при изучении элементарных частиц и процессов, в которых они участвуют, измеряется в специальных единицах — электронвольтах. Если приложить разность потенциалов в 1 В, то электрон в таком электрическом поле приобретает энергию, равную одному электронвольту (1 эВ). Величина этой энергии по техническим масштабам очень невелика. Она равна всего 1,6; 10 19 Дж (джоулей).
Энергия, затраченная на отрыв электрона от ядра атома, называется ионизационным потенциалом, поскольку сам процесс отрыва называется ионизацией. Кстати, для водорода он равен 13 эВ. Для атомов каждого элемента он имеет свое значение. Одни атомы легко ионизовать, другие не очень легко, а третьи очень сложно. На это требуются большие энергетические возможности, поскольку их ионизационный потенциал большой (электроны сильнее удерживаются внутри атома).
Для того чтобы произвести ионизацию атомов и молекул живого вещества, надо приложить значительно меньшую энергию, чем в случае неживых веществ. В живых веществах, как уже говорилось, энергия связи в молекулах составляет единицы и даже сотые доли электронвольт. В неживых молекулах и атомах эта энергия находится в пределах нескольких десятков электронвольт (30-50). Процесс отрыва электронов от ядер сложных молекул живого вещества значительно сложнее, чем в случае атома водорода. Тем не менее принципиально этот процесс в обоих случаях имеет одну и ту же физическую основу. Измерить ионизационные потенциалы в биологических молекулах очень сложно из-за малости минимальных значений энергии электронов в этом случае. Поэтому лучше их характеризовать не абсолютными величинами (электронвольтами), а относительными. Можно принять за единицу измерения ионизационного потенциала в молекулах живых систем ионизационный потенциал молекулы воды. Это тем более оправдано, что вода с энергетической точки зрения является главной в живом организме, основой жизни биологической системы. Важно понять, что здесь речь идет не о любой воде, а о воде, которая содержится в биологических системах. Приняв ионизационный потенциал воды в живом веществе за единицу, можно определить в этих единицах ионизационные потенциалы всех других биологических соединений. Тут имеется еще одна тонкость. У атома водорода имеется всего один орбитальный электрон. Поэтому его ионизационный потенциал равен одной величине энергии. Если атом и молекула более сложные, то их орбитальные электроны находятся в смысле возможности их отрыва в неравных условиях. Наиболее легко оторвать от ядра те электроны, которые имеют наименьшие энергии связи с ядром, то есть которые находятся на самых внешних электронных оболочках. Поэтому, говоря об ионизационных потенциалах сложных биологических систем, имеют в виду те электроны, которые оторвать наиболее легко, у которых энергия связи минимальна.
В биологических системах в результате определенного распределения электрических зарядов (их поляризации) имеются электрические поля. Между электрическими зарядами действуют электрические силы (силы Кулона) отталкивания и притяжения (в зависимости от того, являются ли эти заряды одноименными или разноименными соответственно). Энергетической характеристикой электрического поля является разность потенциалов между разными точками этого поля. Разность потенциалов определяется электрическим полем, которое, в свою очередь, определяется распределением заряженных частиц. Распределение заряженных частиц определяется взаимодействием между ними. Разность потенциалов в биологических системах (биопотенциалов) может составлять единицы милливольт. Величина биопотенциалов является однозначным показателем соотношения биосистемы и ее частей. Она меняется в том случае, если организм находится в патологическом состоянии. В этом случае меняются реакции живого организма на факторы внешней среды. Возникают реакции, которые наносят вред организму, его функционированию и структуре.
Электрофизическими свойствами биологических соединений определяется и быстрота реакции живого организма как единого целого, так и его отдельных анализаторов на действие внешних факторов. От этих свойств зависит и быстрота обработки информации в организме. Ее оценивают по величине электрической активности. Без движения зарядоносителей все эти функции организма были бы невозможными. Таким образом, биоэнергетические явления на уровне элементарных частиц являются основой главных функций живого организма, без этих функций жизнь невозможна. Энергетические процессы в клетках (преобразование энергии и сложнейшие биохимические обменные процессы) возможны только благодаря тому, что в этих процессах участвуют легкие заряженные частицы — электроны.
Биопотенциалы тесно связаны с электрической активностью данного органа. Так, электрическая активность мозга характеризуется спектральной плотностью биопотенциалов и импульсами напряжения различной частоты. Установлено, что для человека характерны следующие биоритмы мозга (в герцах): дельта-ритм (0,5-3); тета-ритм (4-7), альфа-ритм (8-13), бета-ритм (14-35) и гамма-ритм (36-55). Имеются, хотя и нерегулярно, и некоторые ритмы с большей частотой. Амплитуда электрических импульсов мозга человека достигает значительной величины — до 500 мкВ.
Кто знаком с электроникой, тот знает, что при передаче информации и ее обработке важна не только частота следования импульсов и их амплитуда, но и форма импульсов.
Как формируются эти импульсы? Их характеристики говорят о том, что они не могут создаваться изменениями ионной проводимости. В этом случае процессы развиваются более медленно, то есть они более инерционны. Эти импульсы могут формироваться только движением электронов, масса (а значит, и инерционность) которых значительно меньше.
Роль формы электрических импульсов можно понять на примере эффективности дефибрилляции сердца (возвращение к нормальному функционированию сердца в случае его остановки путем воздействия на него электрическими импульсами). Оказалось, что эффективность восстановления работы сердца зависит от формы импульса подаваемого электрического напряжения. Важна и его спектральная плотность. Только при определенной форме импульсов происходит восстановление обычного движения зарядоносителей в живом организме, то есть восстанавливается обычная электропроводность, при которой возможно нормальное функционирование организма (сердца).
В этом методе электроды прикладываются к телу человека в области груди. Но электрические импульсы в данном случае действуют не только непосредственно на сердечную мышцу, но и на центральную нервную систему. Видимо, второй путь наиболее эффективен, поскольку возможности центральной нервной системы по воздействию на все органы (в том числе и на сердце) самые широкие. Команды всем органам поступают через центральную нервную систему быстрее всего, поскольку ее электропроводность (а значит, и скорость распространения информации) значительно выше, чем электропроводность мышечных тканей и кровеносной системы. Таким образом, возвращение к жизни организма человека происходит в том случае, если удастся восстановить электрофизические свойства живого вещества, а точнее, специфические движения электрических зарядов с теми особенностями, которые присущи живым системам.
Решающее значение для жизни и функционирования живого организма имеют именно электрофизические свойства живого. Об этом свидетельствуют и такие факты.
Установлено, что если на человека внезапно действуют раздражающие факторы, то сопротивление тела человека электрическому току (чем больше сопротивление, тем меньше электропроводность) резко изменяется. Принципиально важно, что неожиданные внешние воздействия могут иметь различную физическую природу. Это может быть и яркий свет, и прикосновение горячим предметом, и сообщение человеку неожиданной, важной для него информации. Во всех случаях результат один — электропроводность тела человека увеличивается. Изменение во времени электропроводности зависит как от самого действующего внешнего фактора, так и от его силы. Но во всех случаях увеличение электропроводности происходит очень быстро, а ее восстановление к нормальным величинам — значительно медленнее.
Последствия поражения живого организма электрическим током зависят не столько от величины тока, сколько от состояния нервной системы человека в этот момент. Смерть под действием внешнего электрического напряжения наступает в том случае, если нарушается электропроводность центральной нервной системы. Проходящий по телу человека ток разрушает связи электронной структуры нервной системы. Но энергии этих связей очень невелики. Поэтому можно их разорвать даже при очень малых напряжениях и токах от внешних источников напряжения. Если под действием этих токов движение зарядоносителей в клетках головного мозга (в клетках периферийной и центральной нервной системы и их связях) нарушается, то происходит полное или частичное прекращение питания клеток кислородом.
Губительные изменения электропроводности центральной нервной системы и вообще электрофизических характеристик организма происходят и под действием отравляющих веществ. По-видимому, медицина в будущем будет лечить человека от различных недугов прежде всего восстановлением электрофизических свойств центральной нервной системы.
Конечно, этот вопрос очень не простой. Уже сейчас установлено, что электропроводность разных живых организмов и разных систем в одном и том же живом организме различна. Органы системы организма, которые должны для обеспечения выживания реагировать на внешние раздражители быстрее всего, обладают наименее инерционной проводимостью — электронной и электронно-дырочной.
Дата добавления: 2016-06-05 | Просмотры: 892 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |
|