АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

ДЫХАНИЕ. Мех-м внешнего дых

Прочитайте:
  1. Аппарат внешнего дыхания. Значение компонентов
  2. Аспирационно-обтурационная форма нарушения внешнего дыхания при гипоксической гипоксии.
  3. Болезни зева и глотки. Ангина, причины, мех-мы.
  4. В профилактике внешнего облучения
  5. В чем заключается теория внешнего происхождения третьего сердечного тона?
  6. Влияние речи на параметры внешнего дыхания.
  7. Внешнего g-облучения для медицинского персонала
  8. Внешнее дыхание.
  9. Внешнее дыхание. Обмен газов в легких и тканях
  10. Внешнее дыхание. Показатели внешнего дыхания (легочная вентиляция, диффузионная способность легких, жизненная емкость легких).

Дыхание – это комплекс физиоло-гических процессов, обеспечиваю-щих обмен О2 и СО2 м/у клетками организма и внешней средой. Этапы дых-я: 1. Внешнее дых-е, или венти-ляция (это обмен дыхательных газов м/у атмосферным воздухом и альве-олами). 2. Диффузия газов в легких, т.е. их обмен м/у воздухом альвеол и кровью. 3. Транспорт газов кро-вью. 4. Диффузия газов в тканях (обмен газов м/у кровью капилляров и внутриклеточной жидкостью). 5. Клеточное дыхание (поглощение О2 и образование СО2 в клетках). Меха-низм внешнего дыхания: дыхатель-ный цикл состоит из фаз вдоха и выдоха, м/у кот. отсутствует пауза. Вдох явл. активным процессом. Он осущ-ся в результате сокр-я дых. мышц (при обычном вдохе участву-ют наружные межреберные, меж-хрящевые, диафрагма; при глубоком ромбов-я, трапецив-я, большая и ма-лая грудные, грудиноключичносос-цевидная). В результате сокр-я на-ружных межреберных ребра подни-маются и грудная кл-ка увеличива-ется в сагиттальном и фронт. напра-влениях. Увеличение груд. клетки приводит к увеличению (-) давления в плевральной полости, легкие сле-дуют за груд. клеткой – давление в них падает и становится ниже ат-мосферного и воздух пападает в лег-кие. Обычный спокойный выдох осущ-ся пассивно. Мышцы расслаб-ляются и ребра опускаются. Груд. клетка уменьшается в сагит. и фронт направлениях. При расслаблении мышц диафрагмы, из-за внутрибрю-шного давления, ее купол поднима-ется кверху и груд. клетка уменьш. в вертикальном направлении. (-) дав-ление в плевральной полости пада-ет, легкие сжимаются, давление в них становится выше атмосферного и воздух выходит наружу.

 

ДАВЛЕНИЕ в плевральной поло-сти. Роль в мех-ме дыхания.

Несмотря на то, что легкие не сращены с грудной стенкой, они повторяют ее движения. Это объясняется тем, что между ними имеется замкнутая плевральная щель. Изнутри стенка грудной полости покрыта париетальным листком плевры, а легкие ее висцеральным листком. В межплевральной щели находится небольшое количество серозной жидкости. При вдохе объем грудной полости возрастает. А так как плевральная изолирована от атмосферы, то давление в ней понижается. Легкие расширяются, давление в альвеолах становится ниже атмосферного. Воздух через трахею и бронхи поступает в альвеолы. Во время выдоха объем грудной клетки уменьшается. Давление в плевральной щели возрастает, воздух выходит из альвеол. Движения или экскурсии легких объясняются колебаниями отрицатель­ного межплеврального давления. После спокойного выдоха оно ниже атмосферного на 4-6 мм.рт.ст. На высоте спокойного вдоха на 3-9 мм.рт.ст. После форсированного выдоха оно ниже на 1-3 мм.рт.ст. форсированного вдоха на 10-15 мм. рт. ст. Наличие отрицательного межплеврального давления объясняется эластической тягой легких. Это сила, с которой легкие стремятся сжаться к корням, противодействуя атмосферному давлению. Она обусловлена упругостью легочной ткани, которая содержит много эластических волокон. Кроме того, эластическую тягу увеличивает поверхностное натяжение альвеол. Изнутри они покрыты пленкой сурфактанта. Это липопротеид вырабатываемый митохондриями альвеолярного эпителия. Благодаря особому строению его молекулы, на вдохе он повышает поверхностное натяжение альвеол, а на выдохе, когда их размеры уменьшаются, наоборот понижает. Это препятствует спадению альвеол, т.е. возникновению ателектаза. При генетической патологии. v некоторых новорожденных нарушается выработка сурфактанта. Возникает ателектаз и ребенок гибнет. В старости, а также при некоторых хронических заболеваниях легких, количество эластические волокон возрастает. Это явление называется пневмоброзом. Дыхательные экскурсии затрудняются. При эмфиземе эластические волокна наоборот разрушаются и эластическая тяга легких снижается. Альвеолы раздуваются, величина экскурсий легких также уменьшается. ТЭи попадании воздуха в плевральную полость возникает пневмоторакс. Различают его следующие, виды:

1. По механизму возникновения: патологический (рак легких, абсцесс, проникающее ранение грудной клетки) и искусственный (лечение туберкулеза).

2. В зависимости оттого, какой листок плевры поврежден выделяют наружный и внутренний пневмоторакс.

3. По степени сообщения с атмосферой различают открытый пневмоторакс, когда плевральная полость постоянно сообщается с атмосферой. Закрытый, если произошло однократное попадание воздуха. Клапанный, когда на вдохе воздух из атмосферы входит в плевральную щель, а на выдохе отверстие закрывается.

4. В зависимости от стороны поражения - односторонний (правосторонний, левосторонний), двусторонний.

Пневмоторакс является опасным для жизни осложнением. В результате него легкое спадается и выключается из дыхания. Особенно опасен клапанный пневмоторакс.

Показатели легочной вентиляции

Суммарное количество воздуха, которое вмещают легкие после максимального вдоха, называется обшей емкостью легких (ОЕЛ). Она включает дыхательный объем, резервный объем вдоха, резервный объем выдоха и остаточный объем.

Дыхательный объем (ДО) - это количество воздуха поступающего в легкие во время спокойного вдоха. Его величина 300-800 мл. У мужчин в среднем 600-700, мл, у женщин 300-500 мл.

Резервный объем вдоха (РОвдоха). Количество воздуха, которое можно дополнительно вдохнуть после спокойного вдоха. Он составляет 2000-3000 мл. Этот объем определяет резервные возможности дыхания, т.к. за счет него возрастает дыхательный объем при физической нагрузке.

Резервный объем выдоха (РОвыдоха). Это объем воздуха, который можно дополнительно выдохнуть после спокойного выдоха. Он равен 1000-1500 мл.

Остаточный объем (00). Это объем воздуха остающегося в легких после максимального выдоха. Его величина 1200-1500мл.

Функциональный остаточная емкость (ФОЕ)- это количество воздуха, остающегося в легких после спокойного выдоха. т.е. это сумма остаточного объема и резервного объема выдоха. С помощью ФОЭ выравниваются колебания концентрации О2 и С02 в альвеолярном воздухе в фазы вдоха и выдоха. В молодом возрасте она около 2500 мл старческом 3500 (пневмофиброз, эмфизема).

Сумма дыхательного объема, резервного объема вдоха и резервного объема выдоха составляет жизненную емкость легких (ЖЕЛ). У мужчин она составляет 3500-4500 мл, в среднем 4000 мл. У женщин 3000-3500 мл. Величину жизненной емкости легких и составляющих ее объемов можно измерить с помощью сухого и водяного спирометров, а также спирографа.

Для газообмена в лёгких имеет большое значение скорость обмена альвеолярного воздуха, т.е. вентиляция альвеол. Ее количественным показателем является минутный объем дыхания (МОД); Это произведение дыхательного объема на частоту дыханий в минуту. В покое МОД составляет 6-8 литров. Максимальной объем вентиляции - это объем воздуха проходящего через легкие при наибольшей глубине и частоте дыхания в минуту.

Нормальное дыхание называется эйпное, учащенное - тахипное, его урежение брадипное. Одышка диспное остановка дыхания - апное. Выраженная одышка в положении лежа, при недостаточности левого сердца - ортопное. Функции воздухоносных путей.

Защитные дыхательные рефлексы. Мертвое пространство.

Воздухоносные пути делятся на верхние и нижние. К верхним относятся носовые ходы, носоглотка, к нижним гортань, трахея, бронхи. Трахея, бронхи и бронхиолы являются проводящей зоной легких. Конечные бронхиолы называются переходной зоной. На них имеется небольшое количество альвеол, которые вносят небольшой вклад в газообмен. Альвеолярные ходы и альвеолярные мешочки относятся к обменной зоне.

Физиологичным является носовое дыхание. При вдыхании холодного воздуха происходит рефлекторное расширение сосудов слизистой носа и сужение носовых ходов. Это способствует лучшему прогреванию воздуха. Его увлажнение происходит за счет влаги, секретируемой железистыми клетками слизистой, я также слезной влаги и воды, фильтрующейся через стенку капилляров. Очищение воздуха в носовых ходах происходит благодаря оседанию частиц пыли на слизистой.

В воздухоносных путях возникают защитные дыхательные рефлексы. При вдыхании воздуха, содержащего раздражающие вещества, возникает рефлекторное урежение и уменьшение глубины дыхания. Одновременно суживается голосовая щель и сокращается гладкая мускулатура бронхов. При раздражении ирритантных рецепторов эпителия слизистой гортани, трахеи, бронхов, импульсы от них поступают по афферентным волокнам верхнегортанного, тройничного и блуждающего нервов к инспираторным нейронам дыхательного центра. Происходит глубокий вдох. Затем мышцы гортани сокращаются и голосовая щель смыкается. Активируются экспираторные нейроны, и начинается выдох. А так как голосовая щель сомкнута давление в легких нарастает. В определенный момент голосовая щель открывается, и воздух с большой скоростью выходит из легких. Возникает кашель. Все эти процессы координируется центром кашля продолговатого мозга. При воздействии пылевых частиц и раздражающих веществ на чувствительные окончания тройничного нерва, которые находятся в слизистой оболочке носа, возникает чихание. При чихании также первоначально активируется центр вдоха. Затем происходит форированный выдох через нос.

Различают анатомическое, функциональное и альвеолярное мертвое пространство. Анатомическим называется объем воздухоносных путей - носоглотки, гортани, трахеи, бронхов, бронхиол. В нем не происходит газообмена. К альвеолярному мертвому пространству относят объем альвеол, которые не вентилируются или в их капиллярах нет кровотока. Следовательно, они также не участвуют в газообмене. Функциональным мертвым пространством является сумма анатомического и альвеолярного. У здорового человека объем альвеолярного мертвого пространства очень небольшой. Поэтому величина анатомического и функционального пространств практически одинакова и составляет около 30% дыхательного объема. В среднем 140 мл. При нарушении вентиляции и кровоснабжения легких объем функционального мертвого пространства значительно больше анатомического. Вместе с тем, анатомическое мертвое пространство играет важную роль в процессах дыхания. Воздух в нем согревается, увлажняется, очищается от пыли и микроорганизмов. Здесь формируются дыхательные защитные рефлексы - кашель, чихание. В нем происходит восприятие запахов, и образуются звуки.

Обмен газов в легких

В состав атмосферного воздуха входит 20,93% кислорода, 0,03% углекислого газа. 79,03% азота. В альвеолярном воздухе содержится 14% кислорода, 5,5% углекислого газа и около 80% азота. При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, состав которого соответствует атмосферному. Поэтому в выдыхаемом воздухе 16% кислорода, 4,5% углекислого газа и 79,4% азота. Дыхательные газы обмениваются в легких через альвеолокапиллярную мембрану. Это область контакта альвеолярного эпителия и эндотелия капилляров. Переход газов через мембрану происходит по законам диффузии. Скорость диффузии прямо пропорциональна разнице парциального давления газов. Согласно закону Дальтона, парциальное давление каждого газа в их смеси, прямо пропорционально его содержанию в ней. Поэтому парциальное давление кислорода в альвеолярном воздухе 100 мм.рт.ст. а углекислого газа 40 мм.рт.ст. Напряжение (термин, применяемый для газов растворенных в жидкостях) кислорода в венозной крови капилляров легких 40 мм.рт.ст., а углекислого газа - 46 мм.рт.ст. Поэтому градиент давления по кислороду направлен из альвеол в капилляры, а для углекислого газа в обратную сторону. Кроме того, скорость диффузии зависит от площади газообмена, толщины мембраны и коэффициента растворимости газа в тканях. Общая поверхность альвеол составляет 50-80 м2, а толщина альвеоло -капиллярной мембраны всего 1 мкм. Это обеспечивает высокую эффективность газообмена. Показателем проницаемости мембраны является коэффициент диффузии Крога. Для углекислого газа он в 25 раз больше, чем для кислорода. Где он диффундирует в 25раз быстрее. Высокая скорость диффузии компенсирует более низкий градиент давлений углекислого газа. Диффузионная способность легких для газа (л) характеризуется его количеством, которое обменивается за 1 минуту на 1 мм.рт.ст. градиента давления. Для кислорода в норме она равна 30 мл* мин-1*мм:рт.ст. У здорового человека напряжение дыхательных газов в альвеолярной крови, становится практически таким же, как их парциальное давление в альвеолярном воздухе. При нарушениях газообмена в альвеолах в крови повышается напряжение углекислого газа и снижается кислорода (пневмония, туберкулез, пневмосклероз).

Транспорт газов кровью

Напряжение кислорода в артериальной крови 95 мм.рт.ст. В растворенном состоянии кровью переносится всего 0,3 об.% кислорода. Основная его часть транспортируется в виде НВОз. Максимальное количество кислорода, которое может связать гемоглобин при его полном насыщении, называется кислородной емкостью крови. В норме она составляет 18-24 об.% Образование оксигемоглобина в легких и его распад в капиллярах тканей в основном обусловлены изменениями напряжения кислорода. В капиллярах легких, где напряжение его велико. Происходит его образование, в тканях, напряжение кислорода падает. Поэтому там оксигемоглобин диссоциирует на восстановленный гемоглобин и кислород. В норме связывание гемоглобина с кислородом определяется его парциальным давлением в альвеолярном воздухе, а следовательно напряжением в крови легочных капилляров. Зависимость концентрации оксигемоглобина от напряжения кислорода в крови называется кривой диссоциации оксигемоглобина. Она не является прямо пропорциональной. При низком напряжении кислорода рост концентрации оксигемоглобина замедлен. При напряжении от 10 до 40 мм.рт.ст он практически прямо пропорционален, а выше снова замедляется. Поэтому кривая имеет S-образную форму. Кроме напряжения кислорода, на образование и распад оксигемоглобина влияют и другие факторы. При сдвиге реакции крови в кислую сторону, его диссоциация ускоряется. Ее ускоряет повышение напряжения углекислого газа и температуры. Эти изменения крови имеют место в капиллярах тканей. Поэтому там они способствуют ускоренной диссоциации оксигемоглобина и освобождению кислорода.

Напряжение углекислого газа в венозной крови 46 мм. рт. ст. Его перенос от тканей к легким также происходит несколькими путями. Всего в крови находится около 50 об% углекислого газа. В плазме растворяется 2,5 об.%. В виде карбогемоглобина, в соединении с глобином, переносится около 5 об%. Остальное количество транспортируется в виде гидрокарбонатов, находя1цихся в плазме и эритроцитах. В капиллярах тканей углекислый газ поступает в эритроциты. Там под влиянием фермента карбоангидразы он соединяется с катионами водорода и превращается в угольную кислоту. Она диссоциирует и большая часть гидрокарбонат анионов выходит в плазму. Там они образуют с катионами натрия гидрокарбонат натрия. Меньшая их часть соединяется в эритроцитах с катионами калия, образуя гидрокарбонат калия. В капиллярах легких напряжение углекислого газа падает, а напряжение кислорода возрастает. Образующийся в эритроцитах оксигемоглобин является более сильной кислотой, чем угольная. Поэтому он вытесняет из гидрокарбоната калия анионы угольной кислоты и образует с калием калиевую соль оксигемоглобина. Освобождающиеся анионы угольной кислоты соединяются с катионами водорода. Синтезируется свободная угольная кислота. При низком напряжении углекислого газа карбоангидраза действует противоположным образом, т.е. расщепляет ее на углекислый газ и воду, которые выдыхаются. Одновременно из плазмы в эритроциты поступают анионы угольной кислоты образующиеся в ходе диссоциации гидрокарбоната натрия. Они также образуют с катионами водорода угольную кислоту, которая расщепляется карбоангидразой на углекислый газ и воду. При дыхании из организма выводится около 200 мл углекислого газа в минуту. Это важный механизм поддержания кислотно-щелочного равновесия крови.

Обмен дыхательных газов в тканях

Обмен газов в капиллярах тканей происходит путем диффузии. Этот процесс осуществляется за счет разности их напряжения в крови, тканевой жидкости и цитоплазме клеток. Как и в легких для газообмена большое значение имеет величина обменной площади, т.е. количество функционирующих капилляров. В артериальной крови напряжение кислорода 96 мм.рт.ст в тканевой жидкости около 20 мм.рт.ст, а работающих мышечных клетках близко к 0. Поэтому кислород диффундирует из капилляров в межклеточное пространство, а затем клетки. Для нормального протекания окислительно-восстановительных процессов и митохондриях необходимо, чтобы напряжение кислорода в клетках было не менее 1 мм.рт.ст. Эта величина называется критическим напряжением кислорода в митохондриях. Ниже ее развивается кислородное голодание тканей. В скелетных мышцах кислород накапливает белок миоглобин, по строению близкий к гемоглобину. Напряжение углекислого газа в артериальной крови 40 мм.рт.ст. в межклеточной жидкости 46 мм.рт.ст. в цитоплазме 60 мм.рт.ст. Поэтому он выходит в кровь. Количество ки­слорода, которое используется тканями называется коэффициентом его утилизации В состоянии покоя ткани используют около 40% кислорода или 8-10 об%

Регуляция дыхания. Дыхательный центр

В 1885 году Казгюкий физиолог НА. Миславский обнаружил, что в продолговатом мозге находится центр обеспечивающий смену фаз дыхания. Этот бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых: нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха. В инспираторном центре имеется 2 группы нейронов. Это респираторные а- и Р-нейроны. Первые возбуждаются при вдохе. Одновременно к Р-респираторным нейронам поступают импульсы от экспираторных. Они активируются одновременно с а-респираторными нейронами и обеспечивают их торможение в конце вдоха. Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того, нейронам бульбарного дыхательного центра свойственно явление автоматии. Это их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольнаясмена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, а также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гаспинг - длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста - апнейзис. Дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали что в мосту находится пневмотоксический центр. Сейчас этот термин не применяется. Кроме этих отделов ЦНС в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.

Рефлекторная регуляция дыхания

Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахея и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантные рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз. Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях. Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к р-респираторным нейронам, которые в свою очередь тормозят а-респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует пере­растяжению легких.

Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

Гуморальная регуляция дыхания

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру воз­растает. Частота и глубина дыхания увеличиваются. При снижении напряжения кислорода в крови, т.е гипоксгмии, хеморецепторы также возбуждаются и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на цен­тральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.

Дыхание при пониженном атмосферном давлении. Гипоксия

Атмосферное давление понижается при подъеме на высоту. Это сопровождается одновременным снижением парциального давления кислорода в альвеолярном воздухе. На уровне моря оно составляет 105 мм.рт.ст. На высоте 4000 м уже в 2 раза меньше. В результате уменьшается напряжение кислорода в крови. Возникает гипоксия. При быстром падении атмосферного давления наблюдается острая гипоксия. Она сопровождается эйфорией, чувством ложного благополучия, я скоротечной лотерей сознания. При медленном подъеме гипоксия нарастает медленно. Развиваются симптомы горной болезни. Первоначально появляется слабость, учащение и углубление дыхания, головная боль. Затем начинаются тошнота, рвота, резко усиливаются слабость и одышка. В итоге также наступает потеря сознания, отек мозга и смерть. До высоты 3 км у большинства людей симптомов горной болезни не бывает. На высоте 5 км наблюдаются изменения дыхания, кровообращения, высшей нервной деятельности. На высоте 7 км эти явления резко усиливаются. Высота 8 км является предельной для жизнедеятельности высоте организм страдает, не только от гипоксии, но и от гипокапнии. В результате снижения напряжения кислорода в крови возбуждаются хеморецепторы сосудов. Дыхание учащается и углубляется. Из крови выводится углекислый газ и его напряжение падает ниже нормы. Это приводит к угнетению дыхательного центра. Несмотря на гипоксию дыхание становится редким и поверхностным. В процессе адаптации к.хронической гипоксии..выделяют 3-стадии. На первой аварийной, компенсация достигается за счет увеличения легочной вентиляции, усилении кровообращения, повышения кислородной емкости крови и т.д. На стадии относительной стабилизации происходят такие изменения систем, организма, которые обеспечивают более высокий, у выгодный уровень адаптации. В стабильной стадии физиологиче­ские показатели организма становятся устойчивыми за счет ряда компенсаторных механизмов. Так кислородная емкость крови увеличивается не только за счет возрастания количества эритроцитов, но и 2,3-фосфоглицерата в них;

За счет 2,3-фосфоглидерата улучшается диссоциация оксигемоглобина в тканях. Появляется фетальный гемоглобин. имеющий более высокую способность связывать кислород. Одновременно повышается диффузионная способность легких и возникает "функциональная эмфизема". Т.е. в дыхание включаются резервные альвеолы, и увеличивается функциональная остаточная емкость. Энергетический обмен понижается, но повышается интенсивность обмена углеводов. Гипоксия это недостаточное снабжение тканей кислородом. Формы гипоксии:

1. Гипокосемическая гипоксия. Возникает при снижении напряжения кислорода в крови (уменьшение атмосферного давления, диффузионной способности легких и т.д.).

2. Анемическая гипоксия. Является следствием понижения способности крови транспортировать кислород (анемии, угарное отравление).

3. Циркуляторная гипоксия. Наблюдается при нарушениях системного и местного кровотока (болезни сердца и сосудов).

4. Гистотоксическая гипоксия. Возникает при нарушении тканевого дыхания (отравление цианидами). Дыхание при повышенном атмосферном давлении. Кессонная болезнь Дыхание при повышенном атмосферном давлении имеет место во время водолазных и кессонных (колокол-кессон) работ. В этих условиях дыхание уряжается до 2-4 раз в минуту. Вдох укорачивается, а выдох удлиняется и затрудняется. Газообмен в легких немного ускоряется. При обычном атмосферном давлении в плазме крови находятся в растворенном состоянии около 1 об.% азота. Чем выше атмосферное давление, тем выше его растворимость, тем больше его накапливается, а крови. Увеличивается количество растворенного азота и по мере удлинения времени подводных работ. При быстром снижении давления, например экстренном подъеме водолаза. растворимость азота резко гадает. Он переходит в газообразную форму и образует в сосудах пузырьки - эмболы. Они закупоривают просвет мелких сосудов. Возникает газовая эмболия, и кровоснабжение тканей нарушается. Развивается кессонная болезнь, сопровождающаяся сильными болями в суставах, мышцах, головной болью ("залом"). Появляются рвота, параличи, пострадавший теряет сознание. Для ее лечения пострадавшего помешают в декомпрессионную камеру, где давление вновь поднимают до полного растворения азота. Затем очень медленно снижают его чтобы азот успевал выходить через легкие. Профилактика этого состояния проводится путем использования ступенчатой декомпрессии. Т.е. когда водолаза поднимают на поверхность, то через каждые Юм подъема делают остановки на строго определенное время. Для дыхания на глубине применяют также газовую смесь, в которой—азот замешается на гелий. Он практически не растворяется в плазме крови. Кроме этого азот на глубине больше 70 м, а кислород 90 м приобретают наркотические свойства. Поэтому в гелиевой смеси всего 5% кислорода.

Гипербарическая оксигенация

Для лечения заболеваний сосудов, сердечной недостаточности и др. сопровождающихся гипоксией, используется кислород. Если дается чистый кислород при обычном атмосферном давлении, эта процедура называется изобарической оксигенацией (кислородная подушка). Если используется барокамера, в которой давление поднимается выше атмосферного, то этот метод называется гипербарической оксигенацией. Данные методы служат для увеличения напряжения кислорода в крови. При анемической гипоксии эта терапия бесполезна. При гипоксемической и циркуляторной положительно влияет на состояние больного. Изобарическую, а тем более гипербарическую оксигенацию можно использовать лишь в течение непродолжительного времени. Длительное использование кислорода сопровождается кислородным отравлением. При нормальном атмосферном давлении дышать кислородом можно не более 4 часов. Это связано с тем. что при длительном действии кислорода в клетках возникает гипероксия или кислородное отравление. Она сопровождается угнетением окисления углеводов. Кислородное отравление проявляется снижением почечного и мозгового кровотока, снижением систолического объема. Это приводит к потере сознания и судорогам. Одновременно повреждается легочная ткань, а как следствие нарушается диффузионная способность легких. Уменьшается количество сурфактанта в альвеолах, возникает отек легких. У новорожденных детей повреждаются клетки сетчатки. Поэтому при длительной оксигенации применяется не чистый кислород, а газовые смеси.

 

ФИЗИОЛОГИЯ ПИЩЕВАРЕНИЯ.

Значение пищеварения и его виды. Функции пищеварительного тракта

Для существования организма необходимо постоянное восполнение энергетических затрат и поступление пластического материала, служащего для обновления клеток. Для этого требуется поступление из внешней среды белков, жиров, углеводов, минеральных веществ, микроэлементов, витаминов и воды. Существуют следующие разновидности пищеварения:

1. Аутолитическое. Осуществляется ферментами, находящимися в самих пищевых продуктах.

2. Симбионтное. Происходит с помощью симбионтных организмов), микрофлора кишечника человека расщепляет около 5% клетчатки до глюкозы, у жвачных животных 70-80%).

3. Собственное. Осуществляется специализированными органами пищеварения.

Оно происходит посредством следующих механизмов:

а. Полостное - ферментами, находящимися в полости пищеварительного канала.

б' Мембранное или пристеночное - Ферментами адсорбированными, на мембранах клеток пищеварительного канала

б. Клеточное - ферментами клеток. Собственное пищеварение это процесс физико-химической переработки- -пиши- специализированными 'органам и, в

результате которого она превращается в вещества, способные всасываться в пищеварительном канале и усваиваться' клетками организма.

Органы пищеварения выполняют следующие функции:

1. Секреторная. Она заключается в выработке пищеварительных соков, необходимых для гидролиза компонентов пиши.

2. Моторная и двигательная. Обеспечивает механическую переработку пиши, ее перемещение к пищеварительному каналу и выведение не переваренных продуктов.

3. Всасывательная. Служит для всасывания из желудочно-кишечного тракта продуктов гидролиза.

4. Экскреторная. Благодаря ей через ЖКТ выводятся не переваренные остатки и продукты обмена веществ.

5. Гормональная. В ЖКТ имеются клетки, которые вырабатывают местные гормоны. Они участвуют в регуляции пищеварения и других физиологических процессов.

Пищеварение в полости рта. Состав и физиологическое значение слюны

Обработка пищевых веществ начинается в ротовой полости у человека пища в ней находится 15-20 сек. Здесь она измельчается, смачивается слюной и превращается в пищевой комок. В ротовой полости происходит всасывание некоторых веществ. Например всасывается небольшое количество глюкозы и алкоголя. В нее открываются протоки 3 пар крупных слюнных желез: околоушных, подчелюстных и подъязычных. Кроме того, имеется большое количество мелких желез в слизистой языка, щек и неба. В течение суток вырабатывается около 1,5 литров слюны рН слюны 5,8- 8,0. Осмотическое давление слюны ниже, чем крови. Слюна содержит 99% воды и '1% сухого остатка. В состав сухого остатка входят:

1. Минеральные вещества. Катионы калия, натрия, кальция, магния. Анионы хлора, роданата, гидрокарбонат, фосфат анионы.

2. Простые органические вещества. Мочевина, креатинин, глюкоза.

3. Ферменты, а-амилаза, мальтаза. калликреин, лизоцим (мурамидаза), небольшое количество нуклеаз.

4. Белки. Иммуноглобулины-А, немного белков плазмы крови.

5. Муцин, мукополисахарид, придающий слюне слизистые свойства. Функции слюны:

1. Она играет защитную роль. Слюна смачивает слизистую рта, а муцин препятствует ее механическому раздражению. Лизоцим и роданат обладают антибактериальным действием. Защитную функцию обеспечивают также иммуноглобулины-А и нуклеазы слюны. Со слюной из ротовой полости удаляются отвергаемые вещества. При их попадании в рот выделяется большое количество жидкой слюны.

2. Слюна смачивает пищу и растворяет ее некоторые компоненты.

3. Она способствует склеиванию пищевых частиц формированию пищевого комка и его проглатыванию (опыт с глотанием).

4. Слюна содержит пищеварительные ферменты, осуществляющие начальный гидролиз углеводов. а-Амилаза расщепляет крахмал до декстринов. Она активна только в щелочной и нейтральной' среде. Мальтаза гидролизует дисахариды мальтозу и сахарозу до глюкозы.

5. Без растворения слюной сухих пищевых веществ невозможно восприятие вкуса.

6. Слюна обеспечивает минерализацию зубов т.к. содержит фосфор и кальций. Т.е. выполняет трофическую функцию.

7. Экскреторная. Со слюной выделяется небольшое количество продуктов белкового обмена - мочевина, мочевая кислота, креатинин, а также соли тяжелых металлов.

Механизмы образования слюны и регуляции слюноотделения.

В железистых клетках ацинусов слюнных желез находятся секреторные гранулы. Они осуществляют синтез.ферментов и муцина. Образующийся первичный секрет выходит из клеток в протоки. Там он разбавляется водой и насыщается минеральными веществами. Околоушные железы в основном образованы серозными клетками и вырабатывают жидкий серозный секрет, а подъязычные слизистыми, которые выделяют слюну богатую муцином. Подчелюстные вырабатывают смешанную серсзно-слизистую слюну.

Регуляция слюноотделения преимущественно осуществляется нервными механизмами. Вне пищеварения в основном функционируют мелкие железы. В пищеварительный период секреция слюны значительно возрастает. Регуляция пищеварительной секреции осуществляется условно-и безусловнорефлекторными механизмами. Безусловнорефлекторное слюноотделение возникает при раздражении первоначально тактильных, а затем температурных и вкусовых рецепторов полости рта. Но основную роль играют вкусовые. Нервные импульсы от них по афферентным нервным волокнам язычного, языкоглоточного и верхнегортанного нервов поступают в слюноотделительный центр продолговатого мозга. Он находится в области ядер лицевого и языкоглоточного нервов. От центра импульсы по эфферентным нервам идут к слюнным железам. К околоушной железе эфферентные па­расимпатические волокна идут от нижнего слюноотделительного ядра в составе нерва Якобсона, а затем ушно-височных нервов. Парасимпатические нервы, иннервирующие серозные клетки подчелюстных и подъязычных желёз начинаются от верхнего слюноотделительного ядра, идут в составе лицевого нерва, а затем барабанной струны. Симпатические нервы иннервирутощие железы идут от слюноотделительных ядер II - VI. грудных сегментов, прерываются в шейном ганглии, а затем их постганглионарные волокна идут к слизистым клеткам. Поэтому раздра- жение парасимпатического нервов ведет к выделению большого количества жидкой слюны, а симпатических небольшого объема слизистой. Условно-рефлекторное слюноотделение начинается раньше, безусловно, рефлекторного. Оно возникает на запах, вид пищи, звуки предшествующие кормлению. Условно-рефлекторные механизмы секрецией' обеспечиваются корой 'больших полушарий, которая через нисходящие пути стимулирует центр слюноотделения.

Небольшой вклад в регуляцию слюноотделения вносят гуморальные факторы. В частности его стимулируют ацетилхолин и гистамин, а тормозит тироксин. Калликреин вырабатываемый слюнными железами стимулирует образование из кининогенов плазмы брадикинина. Он расщепляет сосуды желез и усиливает секрецию слюны. Слюноотделения в эксперименте исследуется путем наложения фистулы слюнного протока, т.е. его выведения на кожу щеки. В клинике чистую слюну собирают помощью капсулы Лэппги-Красногороского, которая прикрепляется к выходу выводного протока железы. Проводимость протоков желез исследуют с помощью сиалографии. Это рентгенологическое исследование, протоков, заполненных контрастным веществом ндолиполом. Выделительная функция желез изучается посредством радиосиалографии. Это регистрация выделения железами радиоактивного йода.

Жевание.

Жевание служит для механической переработки пиши, т.е. ее откусывания, дробления, перетирания. При жевании пища смачивается слюной, и из нее формируется пищевой комок. Жевание происходит благодаря сложной координации сокращений мышц, обеспечивающих движения зубов, языка, щёк и дна полости рта. Жевание исследуется с помощью электромиографии жевательных мышц и мастикациографии. Это запись жевательных движений. На мастикациограмме можно выделить 5 фаз жевательного периода:

1.Фаза покоя

2.Введения пищи в рот

3.Первоначального дробления

4.Основная фаза жевания

5.Формирования пищевого комка и проглатывания (рис). Общая продолжительность жевательного периода 15-30 сек.

Силу жевательных мышц исследуют с помощью гнатодинамометрии, их тонусмиотонометрии. эффективность жевания - жевательных проб. Жевание сложнорефлекторный акт. Т.е. он осуществляется и условно-рефлекторным механизмами. Безусловнорефлекторной состоит в том, что пищей раздражаются механорецепторы периодонта зубов и слизистой рта. От них импульсы по афферентным волокнам тройничного, языкоглоточного и верхнегортанного нервов поступают в центр жевания продолговатого мозга. По эфферентным волокнам тройничного, лицевого и подъязычного нервов импульсы идут к жевательным мышцам, осуществляя бессознательные согласованные сокращения. Условно-рефлекторные влияния позволяют произвольно регулировать жевательный акт.

Глотание.

Глотание сложнорефлекторный акт, который начинается произвольно. Сформированный пищевой комок перемещается на спинку языка, языком прижимается к твердому небу и передвигается на корень языка. Здесь он раздражает механорецепторы корня языка и небных дужек. От них по афферентным нервам импульсы идут к центру продолговатого мозга. От него, по эфферентным волокнам подъязычного, тройничного, языкоглоточного и блуждающего нерва, они поступают к мышцам полости рта, глотки, гортани, пищевода. Мягкое небо рефлекторно поднимается и закрывает вход в носоглотку. Одновременно гортань поднимается, а надгортанник опускается, закрывая вход в гортань. Пищевой комок проталкивается в расширившуюся глотку. Этим заканчивается ротоглоточная_фаза_глотання._3атем подтягивается пищевод и его верхний сфинктер расслабляется. Начинается пищеводная фаза. По пищеводу пищевой комок продвигается за счет его перистальтики. Циркулярные мышцы пищевода сокращаются выше пищевого комка и расслабляются ниже него. Волна сокращения-расслабления распространяется к желудку. Этот процесс называется первичной перистальтикой. При подходе пищевого комка к желудку расслабляется нижний пищеводный иди кардиальный сфинктер, пропуская комок в желудок. Вне глотания он закрыт и служит для предотвращения заброса в пищевод желудочного содержимого. Если пищевой комок застревает в пищеводе, то от места его расположения начинается вторичная перистальтика, по механизмам идентичная первичной. Твердая пища продвигается по пищеводу 8-9 сек. Жидкая стекает пассивно, без перистальтики, за 1-2 сек. Расстройства глотания называют дисфагиями. Они возникают при нарушениях в центре глотания (водобоязнь), иннервации пищевода или спазмах мышц. Снижение тонуса кардиального сфинктера приводит к рефлексу, т.е. забросу желудочного содержимого в пищевод (изжога). Если его тонус наоборот повышен пища, скапливается в пищеводе. Это явление называется ахалазией.

В клинике глотание исследуется рентгеноскопическим путем проглатывания взвеси сульфата бария (ренттеноконтрастное вещество).

Пищеварение в желудке

Желудок выполняет следующие функции:

1.Депонирующая. Пища находится в желудке несколько часов.

2.Секреторная. Клетки его слизистой вырабатывают желудочный сок.

3.Моторная. Он обеспечивает перемешивание и перемещение пищевых масс в кишечник.

4.Всасывательная. В нем всасывается небольшое количество воды, глюкозы, аминокислот, спиртов.

5.Экскреторная. С желудочным соком в пищеварительный канал выводятся некоторые продукты обмена (мочевина, креатинин и соли тяжелых металлов).

6.Инкреторная или гормональная. В слизистой желудка имеются клетки желудочно-кишечные гормоны - гастрин, гистамин, мотилин

7.Защитная. Желудок является барьером для патогенной микрофлоры, а также вредных пищевых веществ (рвота).

Состав и свойства желудочного сока. Значение его компонентов

В сутки образуется 1,5 -2,5 литра сока. Вне пищеварения выделяется всего 10 -15 мл сока в час. Такой сок обладает нейтральной реакцией и состоит из воды, муцина и электролитов. При приеме пищи количество образующегося сока возрастает до 500 - 1200 мл. Вырабатываемый при этом сок представляет собой бесцветную прозрачную жидкость сильнокислой реакции, так как в нем находится 0,5% соляной кислоты. рН пищеварительного сока 0,9 - 2.5. Он содержит 98,5% воды и 1,5% сухого остатка. Из них 1,1% неорганические вещества, а 0.4% органические. Неорганическая часть сухого остатка содержит катионы калия, натрия, магния и анионы хлора, фосфорной и серной кислот. Органические вещества представлены мочевиной, креатинином, мочевой кислотой, ферментами и слизью. Ферменты желудочного сока включают пептидазы, липазу, лизоцим. К пептидазам относятся пепсины. Это комплекс нескольких ферментов, расщепляющих белки. Пепсины гидролизуют пептидные связи в молекуле белков с образованием продуктов их неполного расщепления - пептонов и полипептидоз. Пепсины синтезируются главными клетками слизистой а неактивной форме, в виде пепсиногенов. Соляная кислота сока отщепляет от них белок ингибирующий их активность. Они становятся активными ферментами. Пепсин А активен при рН = 1,2 - 2.0. Пепсин С, гастриксин при рН = 3,0 - 3,5. Эти 2 фермента расщепляют короткоцепочечные белки. Пепсин В, парапепсин активен при рН = 3,0 - 3,5. Он расщепляет белки соединительной ткани. Пепсин D, гидролизует белок молока казеин. Пепсины А, В и Д в основном синтезируются в антральном отделе. Гастриксин образуется во всех отделах желудка. Переваривание белков наиболее активно идет в-примукозальном слое слизи, так как там сосредоточены ферменты и соляная кислота. Желудочная 'липаза расщепляет змулыированные жиры молока. У взрослого ее значение не велико У детей она гидролизует до 50% молочного жира. Лизоцимуничтожает микроорганизмы попавшие а желудок.

Соляная кислота образуется в обкладочных клетках за счет следующих процессов:

1.Перехода гидрокарбонат анионов в кровь в обмен на катионы водорода. Процесс образования гидрокарбонат анионов в обкладочных клетках происходит при участии карбоангидразы. В результате такого обмена на высоте секреции возникает алкалоз.

2.Вследствие активного транспорта протонов в эти клетки.

3.С помощью активного транспорта анионов хлора в них.

Соляная кислота растворенная в желудочном соке называется свободной. Находящаяся в соединении с белками определяет связанную кислотность сока. Все кислые продукты сока обеспечивают его общую кислотность.

Значение соляной кислоты сока:

1.Активирует пепсиногены.

2.Создает оптимальную реакцию среды для действия пепсинов.

3.Вызывает денатурацию я разрыхление белков, обеспечивая доступ, пепсинов к белковым молекулам.

4.Способствует створаживанию молока. Т.е. образованию из растворенного казеиногена, нерастворимого казенна.

5.Обладает антибактериальным действием.

6.Стимулирует моторику желудка и секрецию -желудочных желез.

7.Способствует выработке в двенадцатиперстной кишке желудочно-кишечных гормонов. Слизь вырабатывается добавочными клетками. Муцин образует оболочку плотно прилегающую к слизистой. Таким образом он защищает ее клетки от механических повреждений и переваривающего действия сока. В слизи накапливаются некоторые витамины (группы В и С), а также содержится внутренний фактор Кастла. Этот гастромукопротид необходим для всасывания витамина В 12, обеспечивающего нормальный эритропоэз. Пища поступающая из ротовой полости, располагается в желудке слоями и не перемешивается в течение 1-2 часов. Поэтому во внутренних слоях продолжается переваривание углеводов под действием ферментов слюны.

Регуляция желудочной секреции

Пищеварительная секреция регулируется посредством нейрогуморальных механизмов. В ней выделяют три фазы: сложнорефлекторную, желудочную и кишечную. Сложнорефлекторная делится на условно-рефлекторный и безусловно рефлекторный периоды. Условно-рефлекторный начинается с того момента, когда запах, вид пиши, звуки предшествующие кормлению вызывают возбуждение обонятельной, зрительной и слуховой сенсорных систем. В результате вырабатывается так называемый запальный желудочный сок. Он обладает высокой кислотностью и большой протеолитической активностью. После того как пища попадает в ротовую начинается.

Безусловно-рефлекторный, период. Она раздражает тактильные, температурные и вкусовые рецепторы полости рта, глотки, пищевода. Нервные импульсы от них поступают в центр регуляции желудочной секреции продолговатого мозга. От него импульсы по эфферентные волокнам вагуса идут к желудочным железам, стимулируя их активность. Таким образом, в первой фазе регуляцию секреции осуществляют бульбарный центр секреции, лимбическая система и кора больших полушарий. Желудочная фаза секреции начинается с момента поступления пищевого комка в желудок. В основном ее регуляция обеспечивается нейрогуморальными механизмами. Поступивший в желудок пищевой комок, а также выделившийся запальный сок, раздражают рецепторы слизистой желудка. Нервные импульсы от них идут в бульбарный центр желудочной секреции, а от него по вагусу к железистым клеткам, поддерживая секрецию. Одновременно импульсы поступают к G-клеткам слизистой, которые начинают вырабатывать гормон гастрин. В основном С-клетки сосредоточены в антральном отделе желудка. Гастрин наиболее сильный стимулятор секреции соляной кислоты. Секреторную активность главных клеток он стимулирует слабее. Кроме того, ацетилхолин, выделяющийся из окончаний вагуса, вызывает образование гистамина тучными клетками слизистой. Гистамин действует на Нз рецепторы обкладочных клеток, усиливая выделение ими соляной кислоты. Гистамин играет главную роль в усилении выработки соляной кислоты. В определенной степени участвуют в регуляции секреции и интрамуральные ганглии желудка, также стимулирующие секрецию Заключительная кишечная фаза начинается при переходе кислого химуса в двенадцатиперстную кишку. Количество сока выделяющееся в течение нее небольшое. Роль нервных механизмов в регуляции желудочной секреции в этот момент незначительна. Первоначально, раздражение механо- и хеморецепторов кишки, выделение ее 0-клетками гастрина стимулирует секрецию сока желудочными железами. Особенно усиливают выделение гастрина продукты гидролиза белков. Однако затем клетки слизистой кишки начинают вырабатывать гормонгсекретин, который является антагонистом гастрина и тормозит желудочную секрецию. Кроме тот, под влиянием жиров в кишке начинают вырабатываться такие гормоны, как желудочный ингибирующий пептид (С1Р) и холецистокинин-панкреозимин (ХК-ПЗ). Они также угнетают ее.

На желудочную секрецию влияет состав пиши. Впервые это влияние было исследовано в лаборатории И.П. Павлова. Установлено, что наиболее сильными возбудителями секреции являются белки. Они вызывают выделение сока сильнокислой реакции и большой переваривающей силы. В них содержится много экстрактивных веществ (гистамин, аминокислоты и т.д.). Наиболее слабыми возбудителями секреции являются жиры. В них нет экстрактивных веществ они стимулируют выработку в двенадцатиперстной кишке 01Р и ХК-ПЗ. Эти эффекты пищевых веществ используются в диетотерапии.

Нарушения секреции проявляются гастритами. Различают гастриты с повышенной., сохраненной и пониженной секрецией. Они обусловлены нарушениями нейрогуморальных механизмов регуляции секреции или поражением железистых клеток желудка. При чрезмерной выработке гастрина С-клетками возникает болезнь Золлингера-Эллисона. Она проявляется гиперсекреторной активностью обкладочных клеток желудка, а также появлением язв слизистой.

Моторная и эвакуаторная функции желудка

В стенке желудка имеются гладкомышечные волокна, расположенные в продольном, циркулярном и косом направлениях. В области привратника циркулярные мышцы формируют пилоричесхий сфинктер. В период поступления пищи стенка желудка расслабляется и давление в нем падает. Это состояние называется рецессивным расслаблением. Оно способствует накоплению пиши. Моторная активность желудка проявляется движениями трех типов

1.Перистальтические сокращения. Они начинаются в верхних отделах желудка. Там находятся клетки водители ритма (пейсмекеры). Отсюда эти круговые сокращения распространяются к пилорическому отделу. Перистальтика обеспечивает перемешивание и продвижение химуса к пнлорическому сфинктеру.

2.Тонические сокращения. Редкие однофазные сокращения участков желудка. Способствуют перемешиванию пищевых масс.

3.Прогтульсивные сокращения. Это сильные сокращения антрального и пилорического отделов. Они обеспечивают переход химуса в двенадцатиперстную кишку. Скорость перехода пищевых масс в кишечник зависит от их консистенции я состава. Плохо измельченная пища дольше задерживается в желудке. Жидкая переходит быстро. Жирная пища тормозит этот процесс, а белковая ускоряет.

Регуляция моторной функции желудка осуществляется миогенными механизмами, экстрамуральными парасимпатическими и симпатическими нервами, интрамуральными сплетениями и гуморальными факторами. Гладкомышечные клетки водители ритма желудка сконцентрированы в кардиальной части. Они находятся под контролем экстрамуральных нервов и интрамуральных сплетений. Основную роль играет вагус. При раздражении механорецепторов желудка импульсы от них поступают к центрам вагуса. а от них к гладким мышцам желудка, вызывая их сокращения. Кроме того, импульсы от механорецепторов идут к нейронам интрамуральных нервных сплетений, а от них к гладкомышечным клеткам. Симпатические нервы оказывают слабое тормозящее влияние на моторику желудка. Гастрин и гистамин учащают и усиливают движения желудка. Тормозят их секретин и же­лудочный ингибирующий пептид.

Защитным рефлексом пищеварительного тракта является рвота. Она заключается в удалении желудочного содержимого. Рвоте предшествует тошнота. Рвотный центр расположен в ретикулярной формации продолговатого мозга. Рвота начинается с глубокого вдоха, после которого гортань закрывается. Желудок расслабляется. Благодаря сильным сокращениям диафрагмы, содержимое желудка выбрасывается наружу, через открытые пищеводные сфинктеры. Методы исследования функций желудка

В эксперименте основным методом исследования функций желудка является хронический опыт. Впервые операцию наложения фистулы желудка произвел в 1842 г. хирург В.А. Басов. Однако с помощью Басовской фистулы было невозможно получить "истый желудочный сок. Поэтому И.П. Павлов и Шумова-Симоновская предложили методику мнимого кормления. Это операция наложения фистулы желудка в сочетании с перерезкой пищевода - эзофаготомией (табл.). Данная методика позволила не только изучать чистый желудочный сок, но и обнаружить сложнорефлекторную фазу желудочной секреции. В это же время Гейден-гайн предложил операцию изолированного желудочка. Она заключается в вырезании треугольного лоскута стенки желудка из большой кривизны. В последующем края лоскута и остальной части желудка сшиваются, и формируется маленький желудочек. Однако методика Гейденгайна не позволяла исследовать рефлекторные механизмы регуляции секреции, так как перерезались нервные волокна идущие к желудочку. Поэтому И.П. Павлов предложил свою модификацию этой операции. Она заключается в формировании изолированного желудочка из лоскута большой кривизны, когда сохраняется серозный слой. В этом случае идущие там нервные волокна не перерезаются.

В клинике желудочный сок забирается толстым желудочным -зондом по методике Боаса-Эвальда. Чаше используется зондирование тонким зондом по С.С. Зимницкому. При этом порции сока собирают через каждые 15 минут в течение часа и определяют его кислотность. Перед зондированием дают пробный завтрак. По Боасу-Эвальду это 50 г белого хлеба и 400 мл теплого чая. Кроме того в качестве пробного завтрака применяют мясной бульон по Зимницкому,.капустный сок, 10 % раствор спирта, раствор кофеина или гистамина. В качестве стимулятора секреции используют также подкожное введение гастрина. Моторику. желудка в эксперименте исследуют используя механоэлектрические датчики вживляемые в стенку желудка. В клинике применяется рентгеноскопию с сульфатом бария. Сейчас для диагностики нарушений секреции и моторики широко используется метод фиброгастроскопии.

Пищеварение в кишечнике Роль поджелудочной железы в пищеварении

Пища. попавшая в двенадцатиперстную кишку подвергается воздействию поджелудочного, кишечного соков и желчи. Поджелудочный сок вырабатывается экзокринными клетками поджелудочной железы. Это цветная 'жидкость щелочной реакции. рН=7,4 - 8,4. В течение суток выделяется 1.5 - 2,0 л сока. В состав сока входит 98,7% воды и 1,3% сухого остатка. Сухой остаток содержит:

1. Минеральные вещества. Катионы натрия, калия, кальция, магния. Гидрокарбонат, фосфат, сульфат анионы, анионы хлора. Из минеральных веществ преобладает гидрокарбонат натрия. Его 1% из 1,3% сухого остатка. Он определяет щелочную реакцию сока. Благодаря ей кислый химус желудка приобретает нейтральную или даже слабощелочную реакцию. Это создает оптимальную среду для действия панкреатических и кишечных ферментов с рН=7-8.

2. Простые органические вещества. Мочевина, мочевая кислота, креатинин, глюкоза.

3. Ферменты. Они играют важнейшую роль в переваривании белков, жиров и углеводов и делятся на следующие группы;

1.Пептидазы. К ним относятся такие эндопептидазы, как трипсин, химотрипсин и эластаза. Они расщепляют внутренние связи белков с образованием поли- и олигопептидов. Экзопептидазами являются карбоксипептндазы А и В. Они отщепляют конечные аминокислотные цепи с образованием дитрипептидов и аминокислот. Все эти протеолитические ферменты выделяются железой в неактивной форме в виде трнпсиногена. химстрипсиногена. и прокарбоксипетидаз. При поступлении

сока в 12-перстную кишку, трнпсиноген подвергается воздействию фермента эн-терокиназы. От него отщепляется белок ингибитор, и трнпсиноген переходит в активный трипсин. Этот первоначально образовавшийся тоипсин в дальнейшем осуществляет активацию остального трнпсиногена и других проферментов поджелудочного сока. Ингибитор трипсина образуется в тех же железистых клетках, что и трипсин. Это предупреждает воздействие пептидаз на клетки железы.

2.Липазы. Ими являются панкреатическая липаза и фосфолипаза А. Липаза расщепляет нейтральные жиры до жирных кислот и глицерина, а фосфолипаза фосфолипиды.

3.Карбогидразы. Это а-амилаза сока, которая расщепляет крахмал до мальтозы.

4.Нуклеазы. ДНК-аза и РНК-аза. Они гидролизуют нуклеиновые кислоты до нуклеотипов.

Механизмы выработки регуляции секреции панкреатического сока

Проферменты и ферменты поджелудочной железы синтезируются рибосомами ацинарных клеток и сохраняются в них в виде гранул. В период пищеварения они выделяется в ацинарные протоки, и разбавляются в них водой, содержащий электролиты. В протоках анионы хлора обмениваются на гидрокарбонат анионы. Поэтому гидрокарбонат натрия накапливается в соке. Этот процесс в клетках протоков происходит с участием карбоангидразы и активного транспорта.

Регуляция панкреатической секреции осуществляется рефлекторными и гуморальными механизмами. Но главными являются гуморальные. Выделяют три фазы поджелудочной секреции, 1). Сложнорефлекторная фаза. Она запускает секрецию сока. Включает условно-рефлекторный и безусловно-рефлекторный периоды, сокоотделение начинается через 2-3 минуты после начала приема пиши. Это связано с воздействием условно-рефлекторных факторов на рецепторы зрительной, слуховой и обонятельной сенсорных систем. При воздействии пищевых масс на механо-, термо- и вкусовые рецепторы полости рта и глотки включаются безусловно-рефлекторные механизмы. Нервные импульсы от рецепторов поступают в секреторный центр продолговатого мозга. От него по эфферентным волокнам вагуса они идут к ацинарным клеткам. Симпатические нервы тормозят секрецию. 2. Желудочная фаза. Начинается с момента поступления пищевого комка в желудок. Он также раздражает механо- и хеморецепторы желудка, импульсы от которых идут в центр секреции. Затем по вагусу к поджелудочной железе. Наиболее сильными рефлекторными стимуляторами секреции панкреатического сока в эту фазу являются соляная кислота, продукты гидролиза жиров и углеводов. Возбуждает секрецию и вырабатывающийся в желудке гастрин 3. Кишечная фаза. Развивается после поступления химуса в двенадцатиперстную кишку. Рефлекторные механизмы в этой фазе играют незначительную роль Соляная кислота, содержащаяся в химусе, вызывает выделение S-клетками слизистой двенадцатиперстной кишки гормона секретина (Долинский и Попельский, 1898 г. Бейлисс и Старлинг, 1902 г.). Секретин значительно усиливает поступление из эпителиальных клеток в протоки гидрокарбонат анионов. В результате выделяется большое количество сока богатого гидрокарбонатом натрия. Одновременно соляная кислота стимулирует образование клетками кишки гормона холецистокинина панкреозимина (ХЦК-ПЗ). Он вызывает высвобождение проферментов из гра нул ацинарныхклеток,а поэтому их выделение в сок. Кроме того панкреатическую секрецию в этой фазе усиливают вазоактивный интенстинальный пептид (ВИЛ), серотонин, инсулин. Тормозящее влияние на выделение поджелудочного сока оказызают глюкагон, желудочный ингируюший пептид и соматостатин.

В лаборатории И.П. Павлова было установлено, что наибольший объем сока выделяется на углеводы т.е. белый хлеб, а меньше всего на жиры.т.е. жиры тормозят секрецию. В эксперименте секреторную функцию поджелудочной железы исследуют путем наложения фистулы выводного протока. В клинике с помощью дуоденального зондирования тонким зондом. Для стимуляции сокоотделения через зонд вводят 0.5% раствор соляной кислоты_или^секретин. Затем определяют содержание ферментов в соке. Кроме того, функцию поджелудочной железы оценивают с помошью определения панкреатических ферментов в крови и моче.

Очень тяжелым заболеванием поджелудочной железы является острый панкреатит. При нем наблюдается преждевременная активация трипсина, фофсолипазы а эластазы. Возникает самопереваривание клеток железы.

Поэтому применяют ингибиторы протеолиза, например контрикал функции печени. Роль печени в пищварении. Из всех органов печень играет ведущую роль в обмене белков, жиров, углеводов, витаминов, гормонов и других вешеств. Ее основные функции:

1. Антитоксическая: В ней обезвреживаются токсические продукты, образующиеся в толстом кишечнике в результате бактериального гниения белков - индол, скатол и фенол. Они,а также экзогенные токсические вещества (алкоголь), подвергаются биотрансформации. (Экк-Павловскос соустье).

2. Печень участвует в углсводном_обмене. В ней синтезируется и накапливается гликоген, а также активно протекают процессы гликогенолиза и неоглюкогенеза. Часть глюкозы используется для образования жирных кислот и гликопротеинов.

3. В печени происходит дезаминирование аминокислот, нуклеотидов и других азотсодержащих соединений. Образующийся при этом аммиак нейтрализуется путём синтеза мочевины.

4. Печень участвует вжировомобмене.Онапреобразует короткоцепочечные_жирные кислоты в высшие. Образующийся в ней холестерин используется для синтеза ряда гормонов.

5. Она синтезирует ежесуточно около 15 г альбуминов, 0.1- и азглобулины. рз-глооулины плазмы.

6. Печень обеспечивает нормальное свертывание крови_аз-глооулннамн являются протормбин. Ас-глобулин. конвертин, антитромбины. Кроме того, ею синтезируется фибриноген и гепарин.

7. В ней инактивируются такие гормоны, как адреналин, норадреналин, серотонин, андрогены и эстрогены.

8. Она является депо витаминов А,В,Д,Е,К.

9. В ней депонируется кровь, а также происходит разрушение эритроцитов с образованием из гемоглобина билирубина.

10. Экскреторная. Ею выделяются в желудочно-кишечный тракт холестерин. билирубин, мочевина, соединения тяжелых металлов.

1 1. В печени образуется важнейший пищеварительный сок - желчь.

Желчь вырабатывается гепатоцитами путем активного пассивного транспорта в них воды, холестерина, билирубина. катионов. В гепатоцитах из холестерина образуются первичные желчные кислоты - холевая и дезоксихолевая. Из билирубина и глюкуроновой кислоты синтезируется водо-растворимый комплекс. Они поступают в желчные капилляры и протоки, где желчные кислоты соединяются с глицином и таурином. В результате образуются гликохолевая и таурохолевая кислоты. Гидрокарбонат натрия образуется с помощью тех же механизмов, что и в под­желудочной железе.

Желчь вырабатывается печенью постоянно. В сутки се образуется около 1 литра. Гепатоцитами выделяется первичная или печёночная желчь. Это жидкость золотисто-желтого цвета щелочной реакции. Ее рН = 7,4 - 8,6. Она состоит из 97,5% воды и 2,5% сухого остатка.

В сухом остатке содержатся:

1.Минеральные вещества. Катионы натрия, калия, кальция, гидрокарбонат, фосфат анионы, анионы хлора.

2.Желчные кислоты - таурохолевая и гликохолевая.

3.Желчные пигменты - билирубин и его окисленная форма биливердин. Билирубин придает желчи цвет.

4.Холестерин и жирные кислоты.

5.Мочевина, мочевая кислота, креатинин.

6.Муцин

Поскольку вне пищеварения сфинктер Одди, расположенный в устье общего желчного протока, закрыт, выделяющаяся желчь накапливается в желчном пузыре. Здесь из нее реабсорбируется вода, а содержание основных органических компонентов и муцина возрастает в 5-10 раз. Поэтому пузырная желчь содержит 92% воды и 8% сухого остатка. Она более темная, густая и вязкая, чем печеночная. Благодаря этой концентрации пузырь может накапливать желчь в течение 12 часов. Во время пищеварения открывается сфинктер Одди и сфинктер Люткенса в шейке пузыря. Желчь выходит в двенадцатиперстную кишку. Значение желчи:

1.Желчные кислоты эмульгируют часть жиров, превращая крупные жировые частицы в мелкодисперсные капли.

2.Она активирует ферменты кишечного и поджелудочного сока, особенно липазы.

3.В комплексе с желчными кислотами происходит всасывание длинноцепочечных жирных кислот и жирорастворимых витаминов через мембрану энтероцитов.

4.5.Инактивирует пепсины, а также нейтрализует кислый химус, поступающий из желудка. Этим обеспечивается переход от желудочного к кишечному пищеварению.

6. Стимулирует секрецию поджелудочного и кишечного соков, а так


Дата добавления: 2015-05-19 | Просмотры: 877 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.042 сек.)