Введение 3 страница
Таким образом, общий токсический эффект является результатом специфического токсического действия и неспецифических реакций организма.
В токсикогенной фазе отравлений выделяют два основных периода: период резорбции, продолжающийся до момента достижения максимальной концентрации токсичного вещества в крови, и период элиминации, от этого момента до полного очищения крови от яда (рис. 4).
С точки зрения токсикодинамики специфическая симптоматика отравлений, отражающая «избирательную токсичность» ядов, наиболее ярко проявляется в токсикогенной фазе, особенно в период резорбции.
Для последнего характерно формирование тяжело протекающих патологических синдромов острых отравлений, таких, как экзотоксический шок, токсическая кома, асфиксия и др. В соматогенной фазе обычно развиваются патологические синдромы, лишенные выраженной токсикологической специфичности, они трактуются как осложнения острых отравлений - это пневмония, острая почечная недостаточность, сепсис и пр.
Рис. 4. Фазы и периоды отравлений
3.2. Теория рецепторов токсичности
Представление о рецепторе как месте конкретного приложения и реализации токсического действия яда до настоящего времени остается недостаточно ясным, несмотря на то, что эта идея была выдвинута Дж. Ленгли более ста двадцати лет назад. Сам термин «рецептор» в токсикологическом понимании был предложен в начале 20-го века немецким ученым Эрлихом. Термин получил научное обоснование после количественных исследований А. Кларка (1937), показавшего, что между чужеродными веществами и их рецепторами возникает связь, по-видимому, аналогичная взаимодействию субстрата со специфическим ферментом.
Ферменты - биологические катализаторы, присутствующие во всех живых клетках и осуществляющие превращения веществ в организме, тем самым направляя и регулируя его обмен веществ. Ни один процесс в организме не обходится без участия ферментов: так, внутриклеточное дыхание регулируется оксида-зами; в усвоении белков участвуют протеназы, жиров - липазы, углеводов - киназы и фосфодазы и т. д. Всего в организме человека содержится до 1000 различных ферментных систем, катализирующих различные процессы. В то же время абсолютное количество каждого фермента в клетках организма крайне мало, поэтому выведение ферментов из строя достигается небольшими количествами токсичных соединений.
Оказалось, что во многих случаях рецепторами действительно являются ферменты. Например, оксигруппа серина, входящая как составная часть в молекулу фермента ацетилхолинэстеразы, служит рецептором фосфорорганических инсектицидов, образующих с этим ферментом прочный комплекс.
Кроме ферментов, рецепторами первичного действия ядов являются аминокислоты, нуклеиновые кислоты, пуриновые и пиримидиновые нуклеотиды, витамины. Рецепторами часто бывают наиболее реакционно способные функциональные группы органических соединений, такие, как сульфгидрильные, гидро-ксильные, карбоксильные, амин- и фосфорсодержащие, которые играют жизненно важную роль в метаболизме клетки. Наконец, в роли рецепторов токсичности выступают различные медиаторы и гормоны.
Таким образом, логичным является предположение известного токсиколога Э. Альберта, что любое химическое вещество для того, чтобы производить биологическое действие, должно обладать, по крайней мере, двумя независимыми признаками: 1) сродством к рецепторам, 2) собственной физико-химической активностью. Под сродством подразумевается степень связи вещества с рецептором, которая измеряется величиной, обратной скорости диссоциации комплекса «вещество + рецептор».
Наиболее элементарное представление о ней дает простая оккупационная теория Кларка, выдвинутая им для объяснения действия лекарств: токсическое действие вещества пропорционально площади рецепторов, занятой молекулами этого вещества. Максимальное токсическое действие вещества проявляется тогда, когда минимальное количество его молекул способно связывать и выводить из строя наиболее жизненно важные клетки - мишени. Дело не столько в количестве пораженных ядом рецепторов, сколько в их значимости для жизнедеятельности организма. Немаловажной является скорость образования комплексов ядов с рецепторами, их устойчивость и способность к обратной диссоциации, что нередко играет более важную роль, чем степень насыщения рецепторов ядом. Таким образом, современная теория рецепторов токсичности рассматривает комплекс «яд + рецептор» с точки зрения их взаимодействия. Считают, что ковалентные связи ядов с рецепторами прочны и труднообратимы. К счастью, количество токсичных веществ, способных образовывать ковалентные связи невелико. К ним относятся, например, препараты мышьяка, ртути и сурьмы. Большинство же известных в настоящее время токсичных веществ и лекарственных средств взаимодействует с рецептором за счет более лабильных, легко разрушающихся связей - ионных, водородных, ван-дер-ваальсовых, что дает возможность их успешного удаления из организма.
Плодотворной оказалась идея Эрлиха о существовании высокой специфичности первичной реакции взаимодействия яда и клетки. Именно в этих случаях можно говорить о взаимодействии между ядом и рецептором как об отношении, напоминающем «ключ к замку» по Эрлиху.
Однако в токсическом действии многих веществ отсутствует строгая избирательность. Их вмешательство в жизненные процессы основано не на специфических химических воздействиях с определенными клеточными рецепторами, а на взаимодействии со всей клеткой в целом. Этот принцип, вероятно, лежит в основе наркотического действия разнообразных органи ческих и неорганических веществ, общим свойством которых является то, что они неэлектролиты. Для обозначения всех эффектов, которые прямо определяются физико-химическими свойствами вещества, предложен термин «неэлектролитное действие». Такое действие иногда называют «физической» токсичностью.
Токсическое действие большинства веществ включает как неспецифические «физические», так и специфические «химические» компоненты и развивается по смешанному варианту.
4. ТОКСИКОКИНЕТИКА
Токсикокинетика отвечает на вопрос: что происходит с веществом в организме. В этом разделе рассматриваются пути поступления вредных веществ в организм, их транспорт и распределение, биотрансформация и выделение.
4.1. Структура и свойства биологических мембран
Поступление чужеродных веществ в организм, их распределение между органами и тканями, биотрансформация (метаболизм) и выделение предполагают их проникновение (транспорт) через ряд биологических мембран.
Мембранные системы организма имеют одинаковое строение, но отличаются по функциональным свойствам. Они представляют собой подвижные структуры, образованные белково-фосфолипидными комплексами и обладающие ограниченной проницаемостью для различных соединений. В настоящее время за основу принимается гипотеза трехслойной мембраны Доусона -Даниелли.
Два белковых слоя, из которых один обращен в сторону цитоплазмы, а другой - наружу, заключают слой двойного липида (рис. 5). Снаружи липидных слоев с плавающими в них белками находится «карбогидратная шуба», состоящая из разных олигосахаридов, полимеров, включающих десятки типов моносахаридов, в том числе глюкозу. Одна из предполагаемых функций этой «шубы» заключается в том, что она способна отличать клетки собственного организма от чужих. Двойной липидный слой составляет структурный каркас мембраны. Молекулы фос-фолипида ориентированы таким образом, что их гидрофильные группы направлены в сторону белка, а гидрофобные поверхности соприкасаются. Толщина каждого слоя 2-4 нм.
Предполагают, что в клеточных мембранах существуют ультрамикроскопические поры, образованные гидрофильным веществом, причем мембраны и поры имеют определенные электрические заряды.
Рис. 5. Схема молекулярного строения биологической мембраны:
1 - молекулы белка; 2 - гидрофильная часть молекулы; 3 -углеродные цепи; 4 - двойной слой фосфолипидных молекул; 5 –олигосахариды
На мембране или внутри нее могут располагаться системы ферментов, состоящие из белковых молекул. Белки, связанные только с поверхностью мембраны (внешней или внутренней), называют «внешними». Белки, которые проникают внутрь, называют «внутренними». Мембрана - не статичная структура. Соотношение липидов и белков в ней легко изменяется в соответствии с функциональными потребностями. Внутри структуры мембраны у липидов и белков довольно большая свобода передвижения.
Изучение функций клеточных и внутриклеточных мембран позволило выделить специальную группу веществ, оказывающих специфическое мембранотоксическое действие, так называемые мембранотоксины. К их числу относят экзогенные и эндогенные вещества, обладающие фосфолипазной активностью, в результате которой происходит дезорганизация и разрушение основной жидкокристаллической структуры мембран с последующей гибелью клеток. С другой стороны обнаружены некоторые соединения, способствующие стабилизации мембран (холестерин, кортизон, аминазин, салицилаты).
Повреждение мембранных структур клеток является одной из основных причин нарушения их жизнедеятельности. Существует несколько механизмов повреждения мембран. Наиболее существенны четыре: разрушение собственной фосфолипазой, активируемой ионами кальция; перекисное окисление, активируемое ионами Fe2+, ультрафиолетовым излучением и кислородом; механическое повреждение и разрушающее действие антител.
При острых отравлениях наиболее распространенной причиной повреждения является перекисное окисление липидов в мембранах митохондрий, липосом и пр., в результате чего происходит увеличение проницаемости мембран для ионов, в первую очередь Н+ (или ОН-), затем K+, Na+, Ca2+. Следствием этого могут быть осмотические эффекты и разрывы мембран с выходом ферментов. Дальнейшее окисление мембран приводит к полному их разрушению и гибели клеток.
Повреждение мембран при гипоксии, сопровождающее многие заболевания химической этиологии, связано с недостатком энергии, выделяющейся при метаболизме АТФ. Механизм повреждения, вероятно, таков: гипоксия — деэнергизация и падение мембранного потенциала митохондрий — выход Са2+ — активирование фосфолипазы — гидролиз фосфолипидов — увеличение ионной проницаемости — разобщение окислительного фосфорилирования.
Таким образом, повреждение мембранных структур происходит по универсальным механизмам, которые приводят к изменению их проницаемости для ионов, что в свою очередь обусловлено уменьшением или увеличением поверхностного заряда на мембране и снижением или повышением степени гидрофобности липидной фазы мембран. Оба эти фактора действуют одновременно, хотя их относительный вклад в итоговое изменение проницаемости мембран в разных случаях различен. Эти же факторы определяют, в конечном счете неспецифическое действие на проницаемость мембран различных соединений, например таких, как стероиды, белки и многие другие природные соединения.
4.2. Транспорт веществ через мембраны
Вопрос о прохождении веществ через мембраны достаточно сложен, так как при этом приходится учитывать не только функциональные особенности самих мембран, но и определенную роль протоплазмы и клеточных белков.
Мембрана - не просто пассивный барьер. Некоторые вещества проходят непосредственно через мембрану либо путем растворения в ней, либо путем химического взаимодействия с ее веществом.
Однако частично обмен осуществляется через поры. Они не обязательно являются каналами с фиксированным положением. Живая мембрана реагирует на изменяющиеся условия, открывая или закрывая определенные поры, что позволяет пропускать молекулы массой от 100 до 60000.
Транспорт веществ через мембраны осуществляется в результате следующих процессов:
- пассивные: диффузия сквозь поры; диффузия путем растворения в компонентах мембраны; ускоренная диффузия;
- активные: активный транспорт; пиноцитоз. Диффузия представляет собой движение молекул или ионов из области более высокой концентрации или электрического заряда в область низкой концентрации или заряда («под гору»).
Скорость диффузии вещества (СД), согласно закону Фика, определяется по уравнению
где К - коэффициент диффузии данного соединения; А - площадь мембраны; (С1 - С2) - градиент концентрации по обе стороны мембраны; d - толщина мембраны.
Коэффициент диффузии яда или лекарства зависит от его молекулярной массы, степени растворимости в липидах и ионизации, а также от пространственной конфигурации молекулы.
Быстрее всего диффундируют молекулы веществ, обладающих высоким коэффициентом распределения масло/вода, т. е. липофильными свойствами. Растворимые в липидах вещества (например, многие наркотики) могут свободно с минимумом затрат проходить через клеточные мембраны по законам диффузии.
Облегченная, или катализированная диффузия. Для такой диффузии необходимо, чтобы в мембране был носитель, скорей всего, молекула белка. Транспорт происходит «под гору» и не требует затрат энергии. Носитель обратимо связывается с веществами с аналогичной химической структурой, которые могут конкурировать за зоны связывания. Ионы переносятся относительно простыми углеводородами («ионофорами»). Процесс, когда носитель переносит ионы и молекулы в обоих направлениях, называют обменной диффузией.
Активный транспорт - это система транспорта молекул или ионов с помощью носителя через мембрану против градиента концентрации или электрохимического градиента («в гору»). В этом случае требуются затраты энергии, которая образуется в результате метаболизма АТФ в самой мембране. При таком транспорте молекула вещества соединяется с носителем, который претерпевает определенные химические превращения. В качестве носителей обычно служат ферменты. Активный транспорт играет важную роль во всасывании веществ в кишечнике и выделении химических веществ с мочой и желчью.
Пиноцитоз — особый вид активного транспорта. Небольшие капельки или частички вещества попадают в выпячивания клеточной мембраны, которые образуют маленькие вакуоли, поступающие внутрь клеток. Вещество переносится внутри клетки или переваривается в ней.
4.3. Пути проникновения вредных веществ в организм
человека
Токсичные вещества, находящиеся в окружающей среде, могут проникать в организм человека тремя путями: ингаляционным, через дыхательные пути; пероральным, через желудочно-кишечный тракт (ЖКТ); перкутантным, через неповрежденную кожу.
4.3.1. Абсорбция через дыхательные пути
Абсорбция через дыхательные пути - основной путь поступления вредных веществ в организм человека на производстве. Ингаляционные отравления характеризуются наиболее быстрым поступлением яда в кровь.
Дыхательные пути являются идеальной системой для газообмена с поверхностью до 100 м2 при глубоком дыхании и сетью капилляров длиной около 2000 км. Их можно разделить на две части:
а) верхние дыхательные пути: носоглотка и трахеобронхиальное дерево;
б) нижняя часть, состоящая из бронхиол, ведущих в воздушные мешки (альвеолы), собранные в дольки.
С точки зрения поглощения в легких наибольший интерес представляют альвеолы. Альвеолярная стенка выстлана альвеолярным эпителием и состоит из внутритканевого каркаса, содержащего базальные мембраны, соединительную ткань и капиллярный эндотелий Газообмен осуществляется через эту систему, имеющую толщину 0,8 мкм.
Поведение газов и паров внутри дыхательных путей зависит от их растворимости и химической реактивности. Водорастворимые газы легко растворяются в воде, содержащейся в слизистой оболочке верхних дыхательных путей. Менее растворимые газы и пары (например, оксиды азота) достигают альвеол, в которых они абсорбируются и могут реагировать с эпителием, вызывая местные повреждения.
Жирорастворимые газы и пары диффундируют через неповрежденные альвеолярно-капиллярные мембраны. Скорость абсорбции зависит от их растворимости в крови, вентиляции, кровотока и интенсивности обмена веществ. Газообразные вещества, имеющие высокую растворимость в крови, легко поглощаются, а те, у которых низкая растворимость, легко выделяются из легких с выдыхаемым воздухом.
Удержание частичек в дыхательных путях зависит от физических и химических свойств частичек, их размера и формы, а также от анатомических, физиологических и патологических характеристик. Растворимые частички в дыхательных путях растворяются в зоне осаждения. Нерастворимые могут удаляться тремя способами в зависимости от зоны осаждения:
а) с помощью мукоцилиарного покрова как в верхних дыхательных путях, так и в нижней части дыхательных путей;
б) в результате фагоцитоза;
в) путем прохождения непосредственно через альвеолярный эпителий.
Можно установить вполне определенную закономерность сорбции ядов через легкие для двух больших групп химических веществ. Первую группу составляют так называемые нереагирующие пары и газы, к которым относятся пары всех углеводородов ароматического и жирного рядов и их производные. Названы яды нереагирующими вследствие того, что в организме они не изменяются (таких мало) или их превращение происходит медленнее, чем накопление в крови (таких большинство). Вторую группу составляют реагирующие пары и газы. К ним относятся такие яды, как аммиак, сернистый газ, оксиды азота. Эти газы, быстро растворяясь в жидкостях организма, легко вступают в химические реакции или претерпевают другие изменения. Имеются также яды, которые в отношении сорбции их в организме не подчиняются закономерностям, установленным для указанных двух групп веществ.
Нереагирующие пары и газы поступают в кровь на основе закона диффузии, т. е. вследствие разницы парциального давления газов и паров в альвеолярном воздухе и крови.
Вначале насыщение крови газами или парами вследствие большой разницы парциального давления происходит быстро, затем замедляется и, наконец, когда парциальное давление газов или паров в альвеолярном воздухе и крови уравнивается, насыщение крови газами или парами прекращается (рис. 6).
После удаления пострадавшего из загрязненной атмосферы начинается десорбция газов и паров и удаление их через легкие. Десорбция также происходит на основе законов диффузии.
Установленная закономерность позволяет сделать практический вывод: если при постоянной концентрации паров или газов в воздухе в течение очень короткого времени не наступило острое отравление, в дальнейшем оно не наступит. Удаление пострадавшего из загрязненной атмосферы диктуется необходимостью создать возможность десорбции газов и паров.
Из рисунка видно, что, несмотря на одинаковую концентрацию в воздухе паров бензина и бензола, уровень насыщения крови парами бензола значительно выше, а скорость насыщения значительно меньше. Это зависит от растворимости, или, иначе, коэффициента распределения паров бензола и крови.
Рис. 6. Динамика насыщения крови парами бензола и бензина при вдыхании
Коэффициент распределения (К) представляет собой отношение концентрации паров в артериальной крови к концентрации их в альвеолярном воздухе:
Чем меньше коэффициент распределения, тем быстрее, но на более низком уровне, происходит насыщение крови парами.
Коэффициент распределения является для каждого из реагирующих паров (газов) величиной постоянной и характерной. Зная К для любого вещества, можно предусмотреть опасность быстрого и даже смертельного отравления. Пары бензина (К = 2,1), например, при больших концентрациях способны вызвать мгновенное острое или смертельное отравление, а пары ацетона (К = 400) не могут вызвать мгновенного, тем более смертельного, отравления, так как при вдыхании паров ацетона по появляющимся симптомам можно предупредить острое отравление, удалив человека из загрязненной атмосферы.
Использование коэффициента распределения в крови на практике облегчается тем, что коэффициент растворимости, т. е. распределения в воде (коэффициент Оствальда), имеет примерно такой же порядок величин. Если вещества хорошо растворимы в воде, то они хорошо растворимы и в крови.
Иная закономерность присуща сорбции при вдыхании реагирующих газов: при вдыхании этих газов насыщение никогда не наступает (табл. 6).
Сорбция, как видно из таблицы, протекает с постоянной скоростью, и процент сорбированного газа находится в прямой зависимости от объема дыхания. Вследствие этого опасность отравления тем значительнее, чем дольше находится человек в загрязненной атмосфере.
Таблица 6
Сорбция хлористого водорода при вдыхании его кроликом
Время от
начала
опыта,
мин
| Дыхание
| Содержание
во вдыхае-
мом возду-
хе, мг/л
| Всего
посту-
пило
НС1, мг
| Сорбиро-
валось
| Частота
в мин
| Объ-
ем, л
| мг
| %
| 0 - 20
|
| 8,0
| 3,4
| 27,2
| 15,6
|
| 20 - 40
|
| 10,7
| 3,4
| 36,4
| 24,7
|
| 40 - 60
|
| 8,9
| 3,4
| 38,8
| 22,2
|
| 60 - 80
|
| 9,2
| 3,8
| 34,9
| 22,1
|
| 80 - 100
|
| 8,2
| 3,8
| 31,6
| 30,3
|
| 100 -120
|
| 6,6
| 3,8
| 25,1
| 13,5
| 53,5
| Эта закономерность присуща всем реагирующим газам; различия могут быть лишь в месте сорбции. Некоторые из них, например, хлористый водород, аммиак, сернистый газ, хорошо растворимы в воде, сорбируются в верхних дыхательных путях; другие же, например, хлор, оксиды азота, хуже растворяются в воде, проникают в альвеолы и в основном там сорбируются.
Сорбция химических веществ в виде пыли различной дисперсности происходит так же, как и сорбция любой нетоксичной пыли. Опасность отравления при вдыхании пыли зависит от степени ее растворимости. Пыль, хорошо растворимая в воде или жирах, всасывается уже в верхних дыхательных путях и даже в полости носа. С увеличением объема легочного дыхания и скорости кровотока сорбция происходит быстрее, поэтому при выполнении физической работы или пребывании в условиях высокой температуры, когда объем дыхания и скорость кровотока резко увеличивается, отравление может наступить быстрее.
4.3.2. Поглощение в желудочно-кишечном тракте
В повседневной жизни поступление токсичных веществ происходит вместе с пищей и питьем в результате случайного попадания ядов в рот, а также путем заглатывания вдыхаемых нерастворимых частичек. В быту пероральный путь поступления вредных веществ является основным, в производственных условиях этот путь поступления наблюдается сравнительно редко. Классическим примером такого пути может служить поступление свинца. Это - мягкий металл, он легко стирается, загрязняет руки, не отмывается водой и при еде и курении может попасть в полость рта. Таким же путем могут поступать в организм кристаллические нитропроизводные бензола и его гомологов.
В ЖКТ по сравнению с легкими условия всасывания ядов затруднены. Это объясняется тем, что ЖКТ имеет относительно небольшую поверхность; кроме того, при этом проявляется избирательный характер всасывания - легко всасываются вещества, хорошо растворимые в липидах. Кислая среда желудочного сока может изменить химические вещества в неблагоприятную для организма сторону. Так, соединения свинца, плохо растворимые в воде, хорошо растворяются в желудочном соке и поэтому легко всасываются.
Поглощение начинается уже в полости рта, но из-за того, что пища находится там недолго, оно минимально. Поглощаемые там токсичные вещества не подвергаются воздействию пищеварительных соков и метаболизирующих ферментов ЖКТ и не переносятся с кровью по системе воротной вены в печень.
На протяжении желудочно-кишечного тракта существуют значительные градиенты рН, определяющие различную скорость всасывания токсичных веществ. Кислотность желудочного сока близка к единице, вследствие чего все кислоты здесь находятся в неионизированном состоянии и легко всасываются путем пассивной диффузии. Напротив, неионизированные основания поступают из крови в желудок и отсюда в виде ионизированной формы движутся далее в кишечник. Токсичные вещества в желудке могут сорбироваться пищевыми массами, разбавляться ими, в результате чего уменьшается контакт яда со слизистой оболочкой. Время прохождения пищи через желудок - 1 ч.
В основном всасывание ядовитых веществ происходит в тонком кишечнике, секрет которого имеет рН 7,5-8,0. В кишечнике, так же как и в желудке, липидорастворимые вещества хорошо всасываются путем диффузии, а всасывание электролитов связано со степенью их ионизации. Это определяет быструю резорбцию оснований. Вещества, близкие по химическому строению к природным соединениям, всасываются путем пиноцитоза, проявляющегося наиболее активно в области микроворсинок щеточной каемки тонкой кишки. Трудно всасываются прочные комплексы токсичных веществ с белками, что свойственно, например, редкоземельным металлам. Некоторые вещества, например тяжелые металлы, непосредственно повреждают кишечный эпителий и нарушают всасывание.
На абсорбцию в ЖКТ оказывает влияние множество факторов:
1) физико-химические свойства веществ, в особенности их растворимость и диссоциация;
2) количество пищи в ЖКТ и перистальтика пищеварительного тракта;
3) время нахождения пищи в разных отделах ЖКТ;
4) свойства эпителия: его поверхность, рН, интенсивность кровообращения;
5) гидротропизм, т. е. способность некоторых соединений (желчные кислоты, соли высокомолекулярных жирных кислот) преобразовывать нерастворимые соединения в более растворимые;
6) присутствие других веществ, которые при реакции могут иметь синергический или антогонистический эффект. Большинство токсичных веществ, абсорбированных в ЖКТ, попадают в капилляры, затем в воротную вену и по ней в печень. Здесь они изменяются в ходе обмена веществ и в большинстве случаев обезвреживаются. Кроме того, многочисленные токсичные вещества, имеющиеся в крови после всасывания из ЖКТ, могут выделяться с желчью в кишечник. Часть этих выделенных ядовитых веществ может повторно всасываться в ЖКТ (кишеч-но-печеночная циркуляция).
4.3.3. Абсорбция через кожу
Кожа вместе со слизистой оболочкой естественных отверстий организма покрывает поверхность тела. Она представляет собой преграду для физических, химических и биологических агентов, сохраняет целостность организма и гомеостаз, выполняет другие физиологические функции.
Кожа состоит из трех слоев: эпидермиса, собственно кожи (дермы) и подкожной ткани (гиподермиса).
С точки зрения токсикологии наибольшее значение имеет эпидермис. Он состоит из многих слоев клеток. Под самым верхним слоем расположена липидная мембрана («барьерная»). Однако эта мембрана не сплошная: волосяные мешочки и протоки потовых желез проходят через нее и достигают дермы.
Существует по крайней мере три пути проникновения токсичных веществ через кожу (рис. 7): через эпидермис (1), волосяные фолликулы (2) и выводные протоки потовых желез (3).
Первый путь характерен для неэлектролитов. Через фолликулы волосяных мешочков проникают как электролиты, так и неэлектролита.
Количество ядовитых веществ, которые могут проникнуть через кожу, находится в прямой зависимости от их растворимости в воде и липидах, величины поверхности соприкосновения с кожей и скорости кровотока в ней. Последним объясняется то обстоятельство, что при работе в условиях высокой температуры воздуха, когда кровообращение значительно усиливается, количество отравлений через кожу нитропродуктами бензола увеличивается.
Вещества с малым коэффициентом распределения, например, бензин, не способны вызвать отравление через кожу, так как быстро удаляются из организма через легкие. Вследствие этого необходимая для отравления концентрация в крови не накапливается.
Большое значение для поступления ядов через кожу имеет консистенция и летучесть вещества. Жидкие органические вещества с большой летучестью быстро испаряются с поверхности кожи и в организм не попадают. При известных условиях летучие яды могут вызвать отравление через кожу, например, если они входят в состав мазей, паст, клеев, задерживающихся длительное время на коже.
Твердые и кристаллические органические вещества всасываются через кожу медленно и могут вызвать отравление. Наибольшую опасность в этом отношении представляют малолетучие вещества маслянистой консистенции (анилин, нитробензол). Они хорошо проникают в кожу и длительно задерживаются в ней.
Дата добавления: 2015-02-05 | Просмотры: 664 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|