АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Структура и функция печени
Для правильного понимания гепатобилиарной патологии необходимо знание анатомии и ультраструктуры билиарного тракта печени (рис. 7-1). Гепатоциты расположены в один ряд, образуя плотную клеточную пластинку. Гепатоциты отделены от желчных капилляров базолатеральной мембраной, а от синусоидов — синусоидальной. Из-за разницы в строении синусоидальной мембраны и мембраны, обращенной к желчному капилляру, гепатоцит является полярной клеткой. Смежные пластинки гепатоцитов отделены друг от друга синусоидами, которые выстланы эндотелиальными клетками. Отростки эндотелиальных клеток образуют поры (фенестры), служащие для прямого контакта плазмы и гепатоцита с синусоидальной мембраной. В отличие от других типов эндотелия, синусоидальный эндотелий не имеет базальной мембраны. Это способствует переносу белковосвязанных веществ (билирубина и желчных кислот) из синусоидов в пространство Диссе и, в дальнейшем, в гепатоцит, а также ускоряет экскрецию липопротеинов из гепатоцита в синусоиды. В печени алкоголика в синусоидах снижается число фенестр, что приводит к нарушению обмена веществами между гепатоцитом и кровью синусоидов.
Рис. 7-1. Особенности структуры желчного секреторного аппарата. (Но: Yamada Т., Alpers D. Н., Owyang С., Powell D. W., Silvcrstein Е., eds. Textbook ot Gastrocntcrology, 2nd ed. Philadelphia: J. B. Lippincott, 1995; 386.)
Таким образом, функционально синусоидальная мембрана вовлечена в процесс двухстороннего переноса веществ. Транспортные процессы включают захват аминокислот, глюкозы, органических анионов, таких как желчные и жирные кислоты билирубина, для последующих рецептор-опосредованных внутриклеточных реакций. На синусоидальной мембране гепатоцита находятся специфичные транспортеры, в частности Na,K-АТФаза, и происходят процессы выделения альбумина, липопротеидов и факторов свертывания крови. В отличие от нее, основной функцией мембраны, обращенной в желчные капилляры, является секреция желчи, но всасывающая способность этой мембраны ограничена. На этой же части мембраны гепатоцитов расположены специфические ферменты: щелочная фосфатаза, лейцинаминопептидаза, g-глютамилтранспептидаза.
Из капилляров желчь попадает в терминальные желчные протоки, каналы Геринга, выстланные полигональными клетками "закрытой" связи с расположенными рядом гепатоцитами. Эти короткие протоки постепенно соединяются в более крупные протоки, затем в интралобулярные протоки, выстланные кубическим эпителием и имеющие диаметр 30—40 мкм. Из них желчь поступает в общий желчный проток и далее в желчный пузырь и двенадцатиперстную кишку.
Основные функции желчного пузыря: (1) концентрация и депонирование желчи между приемами пищи; (2) эвакуация желчи посредством сокращения гладкомышечной стенки желчного пузыря в ответ на стимуляцию холецистокинином; (3) поддержание гидростатического давления в желчных путях. Желчный пузырь обладает способностью десятикратно концентрировать желчь. В результате этого образуется пузырная, изотоничная плазме желчь, но содержащая более высокие концентрации натрия, калия, желчных кислот, кальция и более низкие — хлоридов и бикарбонатов, чем печеночная желчь.
Особенностью архитектоники печени является образование гепатоцитами ацинусов, которые разделены на три функциональные зоны (рис. 7-2). В первой зоне гепатоциты прилежат к портальному тракту, следовательно, соприкасаются с синусоидами и содержат более высокие концентрации кислорода и питательных веществ. Наоборот, клетки третьей зоны, расположенные в околоцентральной области вокруг терминальной печеночной вены, содержат меньшее количество кислорода. Как следствие, ишемия может привести к некрозу гепатоцитов, расположенных в центральной зоне. Клетки третьей зоны активно участвуют в метаболизме и выведении лекарств, и, следовательно, гепатотоксичные препараты приводят к некрозу гепатоцитов этой зоны.
Рис. 7-2. Печеночный ацинус. Его ось формируется терминальной веточкой воротной вены, печеночной артерией, желчным протоком. Кровь вначале поступает в синусоиды в зону 1, далее — в зону 2, затем — в зону 3, после чего покидает ацинус через печеночную вену. (По: Traber P. G., ChianaleJ., Gumucio J.J. Physiologic significance and regulation of hepatoccllular heterogeneity. Gastroenterology 95: 1131,1988.)
Дата добавления: 2015-08-06 | Просмотры: 650 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
|