АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Распределения по урожайности льносоломки
№
п.п.
| Интервалы по урожайности, ц/га
| Локальные частоты
| Средние варианты
интервалов
| Взвешенные средние варианты
| Символы
| Посевная площадь, га
| Символы
| Урожайность, ц/га
| Символы
| Валовой сбор, т
|
|
| f
|
| х
|
| xf
|
|
| 30-40
| f1
|
| х1
|
| Х1f1
|
|
| 40-50
| f2
|
| х2
|
| X2f2
|
|
| 50-60
| f3
|
| х3
|
| X3f3
|
|
| 60-70
| F4
|
| х4
|
| X4f4
|
| Σ
| Итого
| Σf
|
| -
| -
| Σ xf
|
|
Для нахождения среднего значения признака в интервальном ряду распределения необходимые данные, приведённые в табл. 6.3, подставим в формулу (6.4), получим:
Это означает, что средняя урожайность льносоломки в сельскохозяйственных организациях района составляет 48,3 ц/га.
Если интервальный ряд, используемый для вычисления средней варианты, содержит открытые интервалы, то центры этих интервалов могут быть рассчитаны исходя из предположения, что размеры открытых интервалов совпадают с размерами последующих или предыдущих интервалов, непосредственно к ним примыкающих. При этом срединное значение первого (верхнего) открытого интервала может быть найдено путем вычитания из середины второго интервала величины этого интервала, а срединное значение последнего (нижнего) открытого интервала – прибавлением к середине предпоследнего интервала величины этого же интервала.
Необходимо иметь в виду, что исчисление средней арифметической величины по данным интервального ряда распределения не всегда является абсолютно правильным. Это объясняется неравномерным распределением вариант внутри интервала, в качестве же множителя х для каждого интервала используется его середина. Кроме того, при наличии открытых интервалов к этому добавляются неточности, связанные с установлением неизвестных границ. Поэтому рассмотренный способ расчёта средней варианты для интервального ряда целесообразно применять лишь в тех случаях, когда отсутствуют данные о значениях признака для всей совокупности в целом. При наличии же таких данных точное значение средней варианты может быть получено способом расчёта для дискретного ряда распределения.
В системе АПК средняя арифметическая величина (простая и взвешенная) широко применяется при расчёте многочисленных средних показателей, характеризующих наличие и использование производственного потенциала: средней площади землепользования, посевной площади, урожайности, поголовья, продуктивности животных, численности работников, производительности труда, себестоимости продукции, уровня рентабельности и многих других показателей.
Дата добавления: 2016-06-06 | Просмотры: 405 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 |
|