Средняя квадратическая величина
При условии подстановки значения к=2 в формулу (6.1.) получаем среднюю квадратическую величину. В ранжированном ряду средняя квадратическая величина рассчитывается по невзвешенной (простой) форме:
(6.6)
где х – варианты ранжированного ряда; n – общее число вариант.
Взвешенная форма средней квадратической величины, которая используется для дискретного или интервального ряда, выражается следующим образом:
(6.7)
Средняя квадратическая величина, как самостоятельный вид средних, имеет ограниченное применение. Допустим, две нестандартные цилиндрические емкости для хранения нефтепродуктов с диаметрами оснований 2 и 5 м необходимо заменить двумя новыми, равными по объему емкостями с одинаковым в основании диаметром. При расчёте среднего диаметра оснований новых емкостей по способу средней арифметической простой величины, т.е. полученный результат оказывается заниженным, и по этому диаметру объёмы новых емкостей будут меньше объемов имеющихся емкостей, что не соответствует условию задания. Дело в том, что площади оснований цилиндрических емкостей соотносятся между собой не линейно, а как квадраты их радиусов. Поэтому рассчитывать средний диаметр новых емкостей целесообразно по средней квадратической простой величине:
Таким образом, диаметр оснований новых емкостей должен быть не 3,5, а 3,8 м.
Если же исходные данные представлены в виде дискретного или интервального ряда, то целесообразно применить способ средней квадратической взвешенной величины. Например, необходимо рассчитать средний диаметр сосновых брёвен по данным табл. 6.5.
Диаметр брёвен (варианта) представлен в виде интервального ряда, при этом число их (частота) по каждой группе кратно 10. Это означает, что при расчёте среднего диаметра брёвен в штабеле можно воспользоваться вторым свойством средней величины и сократить частоту каждой группы в 10 раз. Расчет среднего диаметра бревен в штабеле выполняем по формуле 6.7, (табл. 6.6).
С учётом применения второго свойства средних величин конечный расчёт среднего диаметра брёвен в штабеле принимает вид:
Т а б л и ц а 6.5. Число и размер брёвен в штабеле
Число брёвен
| Диаметр, см
| в вершине
| в комле
|
|
|
|
|
|
|
|
|
|
|
|
|
Т а б л и ц а 6.6. Порядок расчета среднего диаметра брёвен в штабеле
Число брёвен
| Диаметр, см
| Середина интервала, см
| Квадраты диаметра
| Взвешенные квадраты диаметра
| фактически., шт
| сокращенное
| в вершине
| в комле
| f
|
|
|
| x
| х2
| х2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Σ 70
|
| -
| -
| -
| -
|
|
Таким образом, средневзвешенный диаметр сосновых брёвен в штабеле, рассчитанный по способу средней квадратической величины, составляет 46,5 см.
Главная сфера применения средней квадратической величины (в невзвешенной и взвешенной формах) – нахождение среднего квадратического отклонения.
Дата добавления: 2016-06-06 | Просмотры: 507 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 |
|