Способы аналитического выравнивания динамического рядов
Выявить общую тенденцию развития уровней динамического ряда можно с помощью различных приемов аналитического выравнивания, наиболее часто осуществляемого следующими способами: во-первых, выравниванием по прямой линии; во- вторых, по показательной кривой; в-третьих, по гиперболе; в-четвертых, по параболе второго порядка.
Способы аналитического выравнивания хотя и содержит в себе ряд условностей, но более совершенны по сравнению с рассмотренными выше приемами сглаживания уровней путем укрупнения периодов и скользящей средней. Аналитическое выравнивание облегчает выявление общей тенденции и изучение сезонных колебаний в характере динамического ряда. Выбор того иного способа аналитического выравнивания обусловлен характером (типом) динамики. Он может быть выражен в виде аналитических уравнений, которым на координатном графике соответствует определенная линия – прямая, гипербола, парабола и т.п.
Тип динамики целесообразно учитывать при выборе способов аналитического выравнивания динамических рядов. В некоторых случаях фактический ряд динамики может характеризоваться значительными колебаниями уровней, причем положительные и отрицательные цепные абсолютные приросты примерно в равной мере отклоняются от средних значений. Если динамический ряд имеет более или менее стабильные абсолютные приросты, то выравниваемый динамический ряд может быть выражен в виде прямой линии. При этом на координатном графике фактический ряд динамики целесообразно показать прямолинейно.
При выравнивании по прямой линии закономерно изменяющиеся уровни динамического ряда рассчитываются как функция времени, выражающаяся уравнением:
(9.20)
где – выровненные значения уровней ряда; t – периоды или моменты времени, к которым относятся уровни; а, в – параметры уравнения (искомой прямой).
Для расчета параметров уравнения прямой линии рекомендуется применять способ наименьших квадратов, основу которого составляет следующие требование: сумма квадратов отклонений фактических уровней ряда (У) от выровненных и лежащих на искомой линии теоретических уровней должна иметь минимальное значение, т.е.
(9.21)
Этому требованию удовлетворяет система нормальных уравнений, которые в соответствии с обозначениями формулы (10.20) могут быть записаны следующим образом:
где У – значения фактических уровней ряда динамики; t – порядковые номера периодов или моментов времени; n – число фактических уровней динамического ряда.
Систему нормальных уравнений (10.22 и 10.23) можно упростить, если срединный уровень ряда условно принять на начальный. В этом случае Σt=0, а система уравнений примет следующий вид:
откуда параметры а, в можно выразить так:
(9.26)
(9.27)
Определив параметры а, в, легко найти выравненные значения уровней и изобразить их графически в виде теоретической прямой линии.
Например, необходимо выровнять по прямой линии динамический ряд, характеризующий реализацию скота (ж.м.) откормочным комплексом «Сож» (табл. 9.9). В этой же таблице приводится и порядок определения искомых значений ΣУ, ΣУt, Σt2, которые помогут найти параметры а, в уравнения (9.20).
Т а б л и ц а 9.9. Аналитическое выравнивание реализации скота
Дата добавления: 2016-06-06 | Просмотры: 447 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 |
|